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Executive Summary
As earth system models (ESMs) become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation 
of model projections. To advance understanding of terrestrial biogeochemical processes and their interactions with hydrology and 
climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain 
model predictions, inform model development, and identify needed measurements and field experiments. Better representations of 
biogeochemistry–climate feedbacks and ecosystem processes in these models are essential for reducing the acknowledged substantial 
uncertainties in 21st century climate change projections.

Building upon past model evaluation studies, the goals of the International Land Model Benchmarking (ILAMB) project are to:

1. Develop internationally accepted benchmarks for land model performance by drawing upon international expertise 
and collaboration

2. Promote the use of these benchmarks by the international community for model intercomparison

3. Strengthen linkages among experimental, remote sensing, and climate modeling communities in the design of new model tests 
and new measurement programs

4. Support the design and development of open source benchmarking tools.

The second ILAMB Workshop in the United States was convened on May 16 to 18, 2016, in Washington, District of Columbia, USA. 
Sponsored by the U.S. Department of Energy’s (DOE’s) Office of Biological and Environmental Research, the workshop was convened 
by the Biogeochemistry–Climate Feedbacks Scientific Focus Area (BGC Feedbacks SFA) project. Overarching goals of the workshop 
were to engage the international research community in defining scientific priorities for (1) design of new metrics, (2) improvement of  
model development and workflow practices, (3) Coupled Model Intercomparison Project (CMIP) evaluation, and to learn about new 
observational data sets and measurement campaigns. 

The workshop drew more than 60 on-site participants, and between 20 and 30 individuals—including students and postdocs—attended 
online at any time during the plenary sessions. Participants were from Australia, Canada, China, Germany, Japan, Netherlands, Sweden, 
United Kingdom, and the United States and represented 10 different major modeling centers. Plenary presentations focused on model 
benchmarking, emergent constraints, evaluation metrics, uncertainty quantification, and field experiment and measurement networks.

Outcomes of the 2016 ILAMB Workshop
This 2016 ILAMB Workshop Report provides a synopsis of the current state of the science and highlights challenges and opportunities 
for benchmarking, model development, and field and laboratory measurements needed to advance climate science. The main text of 
the report provides a synthesis of the ideas, concepts, and scientific priorities presented and discussed at the workshop. The appendix 
of the report consists of topical white papers that summarize invited presentations, describe breakout group proceedings, and offer 
recommendations. In addition, the white papers identify critical gaps and opportunities in measurement programs, offer new approaches 
for model evaluation, and point out synergies among research teams and tools being constructed to support model development, 
parameter estimation, and model–data integration. 

As depicted in the schematic figure below, the topical white papers within the categories of Major Processes and Integrating and Cross-
cutting Themes were synthesized with those on the needs of Model Intercomparison Projects (MIPs) to produce a set of next generation 
Benchmarking Challenges and Priorities resulting from the workshop. Moreover, Benchmarking Approaches for addressing these 
challenges were identified and Enabling Capabilities needed to facilitate next generation benchmarking and model development were 
distilled from the white papers. Addressing these challenges will advance climate science by enabling process understanding, quantifying 
feedbacks, reducing uncertainties, and improving model projections.

Benchmarking Tools
Model evaluation and benchmarking tools currently employed by international modeling centers were assessed at the workshop. Features 
of current benchmarking tools—including the Protocol for the Analysis for Land Surface models (PALS), the Program for Climate Model 
Diagnosis and Intercomparison (PCMDI) Metrics Package (PMP), the Earth System Model Evaluation Tool (ESMValTool), and the 
Land surface Verification Toolkit (LVT)—were reviewed, and the new ILAMB benchmarking systems were described and demonstrated. 
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The ILAMB version 1 (v1) and ILAMB version 2 (v2)  benchmarking systems compare model results with best-available observational 
data products, focusing on atmospheric CO2, surface fluxes, hydrology, soil carbon and nutrient biogeochemistry, ecosystem processes 
and states, and vegetation dynamics. ILAMBv2 is expected to become an integral part of the workflow for model frameworks, including 
the Accelerated Climate Modeling for Energy (ACME) model and the Community Earth System Model (CESM). Moreover, ILAMBv2 
will contribute model analysis and evaluation capabilities to phase 6 of the Coupled Model Intercomparison Project (CMIP6) and 
future model and model–data intercomparison projects.

Benchmarking Challenges and Priorities
A variety of statistical approaches have been adopted to evaluate model accuracy through comparison with observations, including 
calculations of bias, root-mean-square error (RMSE), phase, amplitude, spatial distribution, Taylor diagrams and scores, functional 
relationship metrics, and perturbation and sensitivity tests. While many of these statistical measures are not independent, each provides 
slightly different information about contemporary model performance with respect to observational data and about implications for 
future projections from ESMs. 

However, developing metrics that make appropriate use of observational data remains a scientific challenge because of the spatial and 
temporal mismatch between models and measurements, poorly characterized uncertainties in observationally constrained data products, 
biases in reanalysis and forcing data, model simplifications, and structural and parametric uncertainties. A variety of benchmarking 
challenges and opportunities emerged from workshop breakout group meeting reports. Common themes included the following:

 › Need for collocated measurements, particularly around a core set of AmeriFlux and FLUXNET sites with a sustained record of 
observations for repeated model testing

 › Lack of quantified uncertainty information for observational data

 › Utility of functional response metrics and variable-to-variable comparisons

 › Value of metrics for future projections based on emergent constraints



v

 › Unrealized opportunities for global observational data sets based on satellite remote sensing synthesized with ancillary databases, 
using new algorithms

 › Importance of applying statistical and machine learning methods to upscaling sparse measurements from sites to regions to the globe

 › Need for process-level benchmarks and metrics for extreme events

 › Opportunities for collaboration with earth system model developers (e.g., ACME, CESM, and others)

 › Opportunities for collaboration with important field and laboratory experiments and monitoring activities, including AmeriFlux 
and FLUXNET, Integrated Carbon Observation System (ICOS), Next Generation Ecosystem Experiments (NGEE) Arctic, Arctic–
Boreal Vulnerability Experiment (ABoVE), Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) 
project, Critical Zone Observatories (CZOs), Long-Term Ecological Research (LTER) sites, National Ecological Observatory 
Network (NEON), NGEE Tropics, and Tropical Responses to Altered Climate Experiment (TRACE).

Recommendations for next-generation Benchmarking Challenges and Priorities included the following:

 › Develop supersite benchmarks integrated with AmeriFlux and FLUXNET

 › Create benchmarks for soil carbon turnover and vertical distribution and transport

 › Develop benchmark metrics for extreme event statistics and response of ecosystems

 › Synthesize data for vegetation recruitment, growth, mortality, and canopy structure

 › Create benchmarks focused on critical high latitude and tropical forest ecosystems

 › Leverage observational projects and create a roadmap for remote sensing methods.

Model Intercomparison Project (MIPs)
Model Intercomparison Project (MIPs) are important activities for assessing the coherence and reliability of ESMs. Ongoing and future 
MIPs focused on modeling terrestrial water, energy, and carbon cycles are particularly relevant to ILAMB. Benchmarking needs were 
evaluated for the CMIP6 historical and Diagnostic, Evaluation, and Characterization of Klima (DECK) experiments; the Coupled 
Climate–Carbon Cycle MIP (C4MIP); the Land Surface, Snow and Soil Moisture MIP (LS3MIP); and the Land Use MIP (LUMIP). 
Opportunities for benchmarking model results from other MIPs were also considered. 

Key recommendations that emerged on MIP benchmarking needs were the following:

 › Develop methods to attribute emergent model behaviors such as carbon feedback parameters to specific processes through emergent 
constraint and traceability approaches

 › Benchmark across coupling and complexity hierarchies—from offline land-only simulations to fully coupled ESMs—to attribute 
model biases and uncertainties to specific domains and identify feedbacks between domains

 › Develop paired site data sets for benchmarking model representations of subgrid scale heterogeneity.

Benchmarking Approaches
New and existing Benchmarking Approaches were identified from the workshop. While traditional statistical comparisons with 
observations offer a great deal of information about model performance, metrics based on functional responses or variable-to-variable 
comparisons often suggest why models produce incorrect results. Benchmarking future projections can be accomplished through careful 
use of emergent constraints. Reduced complexity models and traceability frameworks are usefully applied to enable greater process 
understanding through more frequent and detailed testing with reduced computational costs. Formal uncertainty quantification (UQ) 
frameworks and methods, described in papers in the appendix, provide rigorous techniques for understanding model predictions. Finally, 
meta-analyses of perturbation experiments provide a new approach for constraining model predictions of ecosystem responses under 
controlled environmental change conditions.



vi

2016 ILAMB WORKSHOP REPORT

Enabling Capabilities
To address the identified next generation Benchmarking Challenges and Priorities, certain Enabling Capabilities are needed. New model 
development focused on improving process representations is required, and additional model variables should be saved for comparison 
with data. A new Land Model Testbed (LMT) capability employing community benchmarks and supporting UQ frameworks would 
enable more rapid model development and verification, particularly for major ESM frameworks like ACME and CESM. 

Additional field measurements and monitoring activities, as well as perturbation experiments and lab studies, could provide valuable 
observational data for constraining models. High priority measurement needs for developing benchmarks and improving ESMs include 
the following:

 › Long-term energy, carbon, and water flux measurements at AmeriFlux and FLUXNET sites with standardized instrumentation and 
methods, and additional frequent or continuous ancillary in situ measurements of soil moisture, sap flow, tree height and diameter, 
litterfall, and soil nutrients

 › High latitude and tundra soil core measurements of carbon and nutrient distributions, including isotopes and ice/water content, and 
observations of vegetation growth and expansion of woody vegetation

 › Characterization of tropical ecosystem traits and canopy structure and chemistry; observations of tropical ecosystem responses to 
drought, increased temperatures, and elevated atmospheric CO2; and measurements of nutrient cycling and hydrology in tropical 
forests, focusing on land–atmosphere interactions

 › Remote sensing algorithms and processing infrastructure for generating data products useful for large-scale ecosystem 
characterization and monitoring, scaling up in situ measurements, and informing future measurement site selection.

Improved observational data archives (e.g., DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility and 
Environmental System Science (ESS) archives, NASA Distributed Active Archive Centers (DAACs)) and repositories (e.g., Obs4MIPs) 
are needed that offer data discovery, server-side analysis, and advanced distribution capabilities. Finally, new computational resources and 
cyber infrastructure will be required to realize the promise of new benchmarking capabilities. This infrastructure needs to offer a balance 
between pure compute capacity (high core count) and throughput (e.g., cache size, memory size and bandwidth, and input/output 
bandwidth) to support in situ analysis and benchmarking, growing observational data sets, and multi-model comparisons.

Conclusions and Next Steps
The 2016 ILAMB Workshop was successful in bringing together the international community to identify scientific challenges and 
priorities for future research. The workshop demonstrated broad interest on the part of a vibrant community of scientists spanning many 
disciplines that are committed to reducing barriers for information flow between the measurement and modeling communities. 

To effectively address the individual processes and cross-cutting themes discussed above, small, targeted working groups should be formed 
to research and publish supporting analyses. A top priority is supporting CMIP6 activities, where additional development of ILAMB 
functionality could yield powerful automated analyses and model intercomparison capabilities for such national and international 
assessment efforts. 

Over the next decade, the community envisions the ILAMB system to serve as a core capability within a U.S. or international center that 
will provide a home to focused synthesis working groups, host MIP-related activities, and support expanded use of, and access to, ESMs 
by a broader cross section of scientists within disciplines of ecosystem ecology, biogeochemistry, and hydrology.
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1.0 Model Benchmarking Principles  
 and Workshop Introduction
As Earth system models become increasingly complex, there is a growing need for comprehensive and multi-faceted 
evaluation of model projections. To advance understanding of biogeochemical processes and their interactions with 
hydrology and climate under conditions of increasing atmospheric carbon dioxide (Figure 1.1), new analysis methods 
are required that use observations to constrain model predictions, inform model development, and identify needed 
measurements and field experiments. Better representations of biogeochemistry–climate feedbacks and ecosystem 
processes in these models are essential for reducing uncertainties associated with projections of climate change during 
the remainder of the 21st century.

Building upon past model evaluation studies, the goals of the International Land Model Benchmarking (ILAMB) 
activity (Section 3; https://www.ilamb.org/) are the following:

1. Develop internationally accepted benchmarks for land model performance by drawing upon international 
expertise and collaboration.

2. Promote the use of these benchmarks by the international community for model intercomparison.

3. Strengthen linkages among experimental, remote sensing, and climate modeling communities in the design  
of new model tests and new measurement programs.

4. Support the design and development of a new, open source, benchmarking software system for use by the 
international community.

To further these goals and advance the development of benchmarking software tools for use by the international 
community, a diverse team of national laboratory and university researchers sponsored by the US Department  
of Energy is engaged in developing new diagnostic approaches and model benchmarking tools for evaluating  
Earth System Model (ESM) hydrological and biogeochemical process representations. Collaborating through  
the Biogeochemistry–Climate Feedbacks Scientific Focus Area (BGC Feedbacks SFA) project  
(https://www.bgc-feedbacks.org/), this team performs simulations, analyses, and benchmarking to identify  
model weaknesses that lead to model improvements and determine needed measurements that inform the  
design of future field campaigns (Figure 1.2). Research activities such as the BGC Feedbacks SFA play a critical  
role in the model–data experimentation (ModEx) enterprise for the US Department of Energy and other agencies  
by connecting field and laboratory data with models and producing syntheses, analysis methods, and open source 
tools that are made available to the larger international scientific community (Figure 1.3).

Figure 1.1. Today’s advanced Earth system models must represent the interacting energy and radiation dynamics and water cycle 
processes (left) as well as the geochemical and biological processes that control global carbon and nutrient cycles (right) under 
conditions of increasing atmospheric carbon dioxide.
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The benchmarking system developed by the BGC Feedbacks SFA compares model results with best-available 
observational data products, focusing on atmospheric CO2, surface fluxes, hydrology, soil carbon and nutrient 
biogeochemistry, ecosystem processes and states, and vegetation dynamics. The system is expected to become an 
integral part of model verification for future rapid model development cycles for the model frameworks from 
the Accelerated Climate Modeling for Energy (ACME) project and the Community Earth System Model 
(CESM). Moreover, it will contribute model analysis and evaluation capabilities to phase 6 of the Coupled Model 
Intercomparison Project (CMIP6) and future model and model–data intercomparison experiments.

The second ILAMB Workshop in the United States was convened on May 16–18, 2016, in Washington, District of 
Columbia, USA. The overarching goal of the workshop was to engage the international research community 
in defining the scientific priorities for the design of new metrics, the identification of model development 
and workflow practices, and CMIP6 evaluation needs, and to learn about new observational data sets and 
measurement campaigns. The workshop drew more than 60 on-site participants and included attendees from 
Australia, Japan, China, Germany, Sweden, Netherlands, United Kingdom, and the United States. They represented 
10 different major modeling centers. Approximately 90 individuals registered to participate remotely, and between 
20 and 30 were online at any time during the plenary sessions, including students and postdocs from various 
universities and labs and invitees unable to travel from Canada, China, and elsewhere. The workshop agenda, 
presentation abstracts, and the participant list are contained in Appendix F. Plenary presentations focused on model 
benchmarking, emergent constraints, evaluation metrics, uncertainty quantification, and measurement networks.

Figure 1.2. The 
Biogeochemistry–Climate 
Feedbacks Scientific Focus 
Area (SFA) uses best-
available observational data 
sets to evaluate the fidelity 
of Earth system models. 
Open source benchmarking 
tools are produced to 
support model testbeds 
for Accelerated Climate 
Modeling for Energy 
(ACME) and Community 
Earth System Model (CESM) 
frameworks. The project 
identifies model gaps and 
weaknesses, informs new 
model development, and 
suggests new measurement 
and field campaigns.

SECOND ILAMB WORKSHOP IN THE U.S.
More than 5 years after the first ILAMB workshop in the United States in 2011, the 2016 ILAMB workshop, jointly 
sponsored by the U.S. Department of Energy’s Regional & Global Climate Modeling (RGCM) and Earth System 
Modeling (ESM) Programs, was convened to:

» Highlight new techniques and metrics for model evaluation, including applications of the emergent 
constraints approach.

» Enable coordination among the Coupled Climate–Carbon Cycle Model Intercomparison Project; Land Surface, Snow, 
and Soil Moisture Model Intercomparison Project; and the Land Use Model Intercomparison Project.

» Increase awareness of new tools that will be available for model verification and benchmarking, drawing upon data 
streams from field experiments, remote sensing, in situ measurements, and synthesis activities.

» Increase the use and sharing of information and community tools for model evaluation and benchmarking.

» Design new metrics and evaluation approaches for integration into the next generation ILAMB system.

» Create new metrics that integrate across carbon, surface energy, hydrology, and land use disciplines.
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The white papers in the Appendix of this report were authored through “crowdsourcing” for the widest possible 
engagement with researchers at the workshop, attending remotely, or with general interest in model evaluation. 
Breakout group co-leads and plenary presenters, listed as authors of the respective white papers, contributed 
additional effort to resolve comments and produce the combined draft form of the report. In addition to transmitting 
audio and slides over the Internet from all plenary sessions, workshop updates from various participants were 
provided to the community via social media (see sidebar on The Cloud and Social Media at the ILAMB Workshop).  
On the second and third afternoons of the workshop, ILAMBv2 software tutorials were webcast to increase outreach 
to students, postdocs, and early career scientists interested in land model benchmarking.

This report provides a synopsis of the current state of the science and highlights challenges and opportunities 
for benchmarking, model development, and field and laboratory measurements needed to advance climate 
science. The main text provides a synthesis of the ideas, concepts, and scientific priorities presented and discussed 
at the workshop. Section 4 highlights benchmarking priorities identified by the scientific community. Categorized 
as Major Processes (detailed in Appendix B) and Integrating and Cross-cutting Themes (detailed in Appendix C), these 
topics are listed below, and the process by which the corresponding white papers were synthesized for the main body 
of the report is summarized in Figure 1.4.

Major Processes

» ecosystem processes and states
» hydrology
» atmospheric CO2

Figure 1.3. Model simulations and benchmarking play a critical role in the model–data experimentation (ModEx) 
enterprise outlined in this diagram. By identifying model weaknesses and knowledge gaps, benchmarking helps 
inform process research and experimental design, which generate data that drives new model development in a cyclic 
fashion. All of these steps both use and produce data, models, and analysis capabilities and tools that can be shared 
and used by the larger international research community.

» soil carbon and nutrient biogeochemistry
» surface fluxes (energy and carbon)
» vegetation dynamics
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Integrating and Cross-cutting Themes

» process-specific experiments
» metrics from extreme events
» design of new perturbation experiments
» high latitude processes

» tropical processes
» remote sensing
» eddy covariance flux networks

The Appendix of this report summarizes the invited presentations, describes breakout group proceedings and 
recommendations, and identifies critical gaps and opportunities in measurement programs, new approaches for 
model evaluation, and synergies among research teams and tools being constructed to support model development, 
parameter estimation, and model–data integration.

Figure 1.4. The topical white papers within the categories of Major Processes and Integrating and Cross-cutting Themes 
were synthesized with those on the needs of Model Intercomparison Projects (MIPs) to produce a set of next generation 
Benchmarking Challenges and Priorities resulting from the workshop. In addition, Benchmarking Approaches for addressing 
these challenges were identified and Enabling Capabilities needed to facilitate next generation benchmarking and model 
development were distilled from the white papers. Addressing these challenges will advance climate science by enabling 
process understanding, quantifying feedbacks, reducing uncertainties, and improving model predictions.

Section 2 describes a collection of existing land model evaluation or benchmarking tools and identifies other model 
evaluation capabilities currently employed in international climate modeling centers. Strengths and weaknesses of 
these existing approaches are considered in the discussion of potential synergies for future development across varied 
benchmarking packages. Section 3 presents an overview of the ILAMB Software Packages (ILAMBv1 and ILAMBv2) 
released to the community at the workshop. Section 4 focuses on next generation benchmarking challenges, identified 
by the international community, for confronting models. Suggestions for careful consideration of how best to 
employ measurements and observationally constrained data products are an important community contribution 
from the workshop. In some cases, the community would benefit from synthesis of existing data or from entirely 
new measurements. Section 5 describes future model intercomparison projects (MIPs), particularly those associated 
with the 6th phase of the Coupled Model Intercomparison Project (CMIP6), and discusses model evaluation needs, 
challenges, and opportunities expected in the future.
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Section 6 describes a proposed land model development and evaluation testbed methodology and highlights specific 
metrics and datasets identified for evaluating new process parameterizations being developed for the ACME Land 
Model (ALM). Section 7 illustrates a mathematical methodology for evaluating structural components of carbon cycle 
models and describes approaches for integration of uncertainty quantification techniques into model benchmarking 
activities and tools. Section 8 presents computational needs and challenges for large scale climate data analytics, with 
a focus on model evaluation and benchmarking. Finally, Section 9 describes next steps for the scientific enterprise 
of model benchmarking through focused mini-workshops, use of extensible archives for data expressly designed for 
model comparison (e.g., obs4MIPs), and community research opportunities centered on science questions to be 
addressed by large MIPs. The Appendixes that follow these sections provide detailed descriptions of presentations, 
notes from meeting sessions, and citations to relevant research in support of the main body of the report.

THE CLOUD AND SOCIAL MEDIA AT THE ILAMB WORKSHOP
Conferencing technology, document crowdsourcing in the Cloud, and social media were all employed at the 
ILAMB Workshop to maximize community participation. Audio and slides from plenary sessions all three days 
were transmitted over the Internet through software called BlueJeans.

All slides and meeting notes were developed and edited by workshop participants using Google Slides and 
Google Docs, allowing local and remote attendees to contribute notes and comments for any plenary or 
breakout group session. Twitter was employed by many participants to make comments, post ideas, or ask 
questions during the workshop. A sampling of these tweets is shown here.

This workshop report was developed by crowdsourcing through the community using Google Docs, which 
enabled participants to continue contributing new ideas, figures, and references to relevant research right 
up until final production.

The use of technology even helped reduce gender, racial, and cultural imbalances among workshop 
participants since female caretakers could attend from their homes and researchers in foreign countries 
could attend without traveling long distances.
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2.0 Benchmarking Tools
2.1 Evaluation and Benchmarking Tools
To prepare ILAMB Workshop participants for discussions of model evaluation and benchmarking, several of the 
leading benchmarking tools being employed by the research community were reviewed and presented by invited 
workshop speakers. These tools, some of which were designed specifically for evaluating land models and others for 
general applicability to Earth system models, are described here. The Protocol for the Analysis for Land Surface 
models (PALS; Abramowitz, 2012) is an online web application for the automated evaluation and benchmarking 
of land surface model (LSM) simulations. The Program for Climate Model Diagnosis and Intercomparison 
(PCMDI) Metrics Package (PMP; Gleckler et al., 2016) emphasizes summary statistics that gauge model 
errors across a range of spatial and temporal scales for the  atmosphere, ocean, and sea ice, and is designed to 
deliver  systematic benchmarking for Coupled Model Intercomparison Project (CMIP) Diagnostic, Evaluation 
and Characterization of Klima (DECK) simulations. The Earth System Model Evaluation Tool (ESMValTool; 
Eyring et al., 2016a) is a community effort to encourage open exchange of diagnostic source code and evaluation 
results through a standardized workflow framework. The Land surface Verification Toolkit (LVT; Kumar et al., 
2012), originally designed to support NASA’s Land Information System (LIS; Kumar et al., 2006), is an automated 
evaluation framework that incorporates a model–data fusion paradigm. The new ILAMB packages (Section 3), 
ILAMBv1 (Mu et al., 2016) and ILAMBv2 (Collier et al., 2016), are open source land model evaluation systems that 
operate on global-, regional-, and site-level data and provide a hierarchical scoring system to indicate model fidelity 
(Mu et al., in prep.).

The ESM community agrees that systematic model assessment should be a routine component of the model 
development process. Benchmarking systems should provide a mechanism for archiving of previous results in a 
manner that allows for ease of viewing later. For example, ILAMB facilitates the comparison of multiple models or 
model versions simultaneously (e.g., Figure 2.1). Scores for individual metrics can easily be compared to determine 
the tradeoffs resulting from model modifications. Likewise, the PALS system retains all datasets, analysis scripts, 
and results for efficient comparison across model versions. The second phase of PALS will introduce a distributed 
architecture in which analysis nodes are located at modeling centers to circumvent the need for repeated transfers of 
large files that may be a barrier to routine model evaluation.

Model evaluation tools should be designed to test the predictive power of a model under conditions of a changing 
climate. Given that direct model evaluation is possible only with contemporary observations, it is difficult to establish 
whether a model has predictive skill. However, within the ILAMB system, development of functional benchmarks 
to relate biogeochemical or biogeophysical responses to a physical driver will test whether a model can accurately 
simulate the relationship between a model variable and a physical driver across a range of driver values. When a model 
can reproduce functional relationships across a full range of present day climate regimes, for example, it may yield 
more robust responses to future change (e.g., Figure 2.2). While this approach is indirect, it moves beyond simple 
time series or spatial comparisons to probe relationships among variables and drivers or among variables and other 
variables. These relationships may then be useful for testing future predictions using emergent constraint approaches. 
A complementary approach for testing model predictivity, prototyped in the LVT, are metrics based on information 

KEY RECOMMENDATIONS
» Well-established aspects of model assessment should be a routine component of the model development process 

that over time becomes increasingly comprehensive.

» Evaluation tools should include testing the predictive power of models under a changing climate.

» Benchmarking packages should span a wide range of spatial and temporal scales and extents.

» Integration of a diversity of evaluation tools into a common workflow framework could lead to new insights into 
climate processes and phenomena.

» Evaluation and benchmarking systems should be open source and freely distributed to leverage the work of many 
modeling teams and to minimize redundancy.

» Benchmarking tools should be integrated with data repositories that support standardized access through an 
applications programming interface.
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theory. By considering entropy or information  
content within model output, a package may be  
able to evaluate the robustness of model predictions  
to a different mean state. 

Building a benchmarking system that spans spatial and 
temporal scales is crucial. Land surface processes are 
heterogeneous, but the climate impact of biogeochemical 
exchange with the atmosphere is global. ILAMB currently 
incorporates both global gridded observations and site-level 
time series and offers a scheme for scoring performance 
on both kinds of comparisons, representing both spatial 
and temporal aspects of model performance. 
The LVT system dynamically transforms model 
output to match the scale of observational 
constraints. The PALS system is presently 
limited to a set of flux tower sites with high 
data density in the temporal domain and 
ancillary observations. 

Ultimately, linking ILAMB to existing 
model evaluation tools for physical climate 
will facilitate improved prediction in fully 
coupled Earth system models. The PCMDI 
Metrics Package and the ESMValTool are 
community tools designed to evaluate a 
set of outputs complementary to ILAMB, 
especially from non-terrestrial components 
of the Earth system. We see opportunities for 
linking with these packages because a lack of 
fidelity in the simulation of physical climate in 
biogeochemical hotspots, such as the Amazon, 
may induce a cascade of impacts across 
ecosystems, aerosols, atmospheric chemistry, 
and atmospheric dynamics. Routinely 
employing ILAMB or other diagnostics 
packages for analysis of the 6th phase of the 
Coupled Model Intercomparison Project 
(CMIP6) will facilitate sharing of process-level 
insights for more rapid and productive future 
model development and evaluation.

Figure 2.1. The ILAMBv2 package produces a summary 
graphic depicting model performance across a wide 
variety of variables, emphasizing absolute performance 
(left) as well as relative performance (right) with respect 
to comparisons with observations. This figure compares 
results from the ACME Land Model (ALM) run offline 
with carbon–nitrogen (CN) biogeochemistry (ALM_CN), 
run offline in satellite phenology (SP) mode (ALM_SP), 
and fully coupled in SP mode (ALM_WCYCL) with the 
Community Land Model (CLM) run offline for CLM-4.0 
(CLM40cn), for CLM-4.5-BGC (CLM45bgc_CRUNCEP)  
and for CLM-4.5-BGC with Global Soil Wetness Project  
version 3 (GSWP3) forcing (CLM45bgc_GSWP3).  
(image to the right)

Figure 2.2. A metric for heat transfer through snow. The dashed line and 
gray shading show observed relation between the normalized difference in 
the amplitude of the annual cycle of air temperature versus near-surface soil 
temperature at different levels of effective mean snow depth. Colored lines 
represent the snow heat transfer relationship as obtained from CMIP5 models 
(Figure 4 of Slater et al., 2016).
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Many model evaluation packages are open source community tools, and such a free and open framework facilitates 
wide use of the benchmarking system because users can add evaluation metrics or sub-select from existing metrics 
as desired. Challenges to adoption, integration with other tools, and cooperative development include standards 
for file formats and data conventions, programming languages, and the diversity of computational architectures 
required to support single-point to high resolution global analyses. Given that most Earth system modeling centers 
do not presently share evaluation packages, building flexibility into the structure of news tools is likely to minimize 
redundant effort across centers. Opportunities to leverage developments across modeling centers should be pursued 
by engaging with ongoing data infrastructure efforts for CMIP and more broadly the World Climate Research 
Programme (WCRP).

2.2 Other Model Evaluation Capabilities in Use  
 at Modeling Centers
Modeling centers presently employ a patchwork of model evaluation methodologies. A survey conducted prior 
to the 2016 ILAMB Workshop, designed to gauge the philosophies and approaches used for model evaluation, 
confirmed unanimous community interest in comprehensive evaluation tools, with all modeling centers reporting 
that evaluation played multiple roles in the model development process. Although the primary reported use for model 
evaluation was to diagnose errors in the model, modeling centers also use their evaluation packages to tune model 
parameters and to aid with model analyses.

Responses from the modeling centers also revealed the need for community-based approaches to share best 
practices. Although most modeling centers had their own model evaluation package, some of these packages are 
slanted toward general diagnostics rather than land-specific diagnostics. Of these packages, roughly half included 
quantitative metrics and scoring; however, most of the packages also relied significantly on expert judgment, such 
as for interpreting graphical comparisons between model output and observational constraints. An impediment 
to quantitative comparisons was the perception that data quality varies widely from one dataset to another. For 
quantitative comparisons, several modeling centers had already begun to rank variables by the availability and quality 
of observations (e.g., Figure 2.3), both for prioritizing the integration of new variables into their package and for 

Figure 2.3. Ranking system employed by UKMO in determining land variables to incorporate into their metrics 
package. Adapted with permission from Martin Best and Chris Jones (UK Met Office).
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gauging the relative importance of an observational constraint that had already been incorporated into the package. 
An important contribution from ILAMB may therefore be parsing the appropriate uses and limitations of various 
datasets that can be used for model evaluation.

The workflow through which model evaluation packages are employed suggests that another important contribution 
from a system like ILAMB is in facilitating comparisons for both coupled and uncoupled model runs. Most modeling 
centers reported that they develop their model sequentially, first focusing on uncoupled simulations, and later tuning 
for coupled simulations. A challenge for this sequential approach is that there are significant uncertainties in driver 
datasets that likely propagate to biases in land model output. Thus, ILAMB capabilities to evaluate both coupled 
and uncoupled runs is likely advantageous. Further development of functional response metrics would facilitate both 
types of comparisons.

A crucial component of benchmarking workflows is the ability to confront models with observational datasets that 
may reside in one or more data archives or repositories, and may evolve in time as new observations are added or as 
data processing methods are improved. Currently, this process is ad hoc, with modeling centers or individual scientists 
typically accessing a given dataset once, possibly converting its format to one that is most consistent with model 
output, and then storing the data locally for use in analysis. This process could be considerably streamlined through 
the development of an application programming interface (API) that allows benchmarking toolkits to rapidly and 
traceably access specific versions of datasets wherever they may be archived, align the data with model formatting 
requirements, and track whether updated dataset versions are available or new quality control issues with a given 
version of a dataset have been identified. This functionality is particularly important for model developers, like 
those in DOE’s ACME project, who wish to track the evolution of model performance over time. If automatically 
downloaded observational data change without the user being informed, the fidelity of the model will appear to 
change even though no change was made to the model code or input data. We advocate for Federated data centers 
that support interoperable services as a means for solving the myriad of challenges associated with integrating 
observational data for model benchmarking (Williams et al., 2016). Obs4MIPS, a Federated archive built for data 
sets created or reprocessed specifically for use in comparison with model results, represents early work toward meeting 
these data management, versioning, and provenance challenges (Teixeira et al., 2014; Ferraro et al., 2015).

ILAMB promises to address barriers to sharing model evaluation packages across centers. A few modeling centers 
have already adopted ILAMB as a primary or secondary model evaluation package. Several centers desired better 
integration with other centers; however, a difficulty is that a diversity of software is used, including the NCAR 
Command Language (NCL), Ferret, Fortran, R, and Python. Thus, an open source evaluation system will likely 
facilitate cross-center interactions and drive community standards for model evaluation.

2.3 Synergies Across Different Benchmarking  
 Activities 
Several modeling groups have well-developed efforts focusing on land model assessment and benchmarking. These 
projects are all moving forward in parallel with ILAMB development. While some overlap exists across these projects, 
each package has a particular set of capabilities and strengths. PALS focuses on benchmarking in the true sense 
of the word by defining, through statistical models, an a priori expectation of minimum land model performance 
and assessing the prognostic models against that a priori expectation. LVT focuses primarily on water and energy 
cycling metrics and includes uncertainty and ensemble diagnostics, as well as more advanced statistical measures 
based on information theory, spatial similarity and scale decomposition techniques. ILAMB, on the other hand, 
emphasizes breadth through compilation and use of a comprehensive array of land datasets that cover a wide 
spectrum of terrestrial system processes and space and time scales. The ESMValTool and PCMDI Metrics Package 
provide mechanisms for routine analysis of coupled model output and include a set of diagnostics packages that 
collectively provide a comprehensive assessment of a wide range of essential climate variables—including some land 
variables—that are simulated by Earth system models. Each of these benchmarking efforts is serving unique as well as 
complementary purposes.

At this stage, coordination of these distinct and international land model benchmarking/assessment activities is 
challenging due to the diversity of approaches and the complexities of the international funding environment. 
Nonetheless, the 2016 ILAMB Workshop provided a good opportunity for everyone to share progress and ideas. 
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Over the longer term, it may be possible and beneficial to integrate existing land diagnostics packages under a loosely 
coordinated framework, potentially in a manner similar to that employed by ESMValTool for analysis of the coupled 
climate system. Under this scenario, the independently developed diagnostics packages (ILAMB, PALS, LVT) could 
be brought together under a single umbrella. Transitioning to this mode of operation would have the benefit of 
reducing effort related to the overhead of benchmarking (e.g., workflow processes such as reading in, processing, 
and reformatting model and observational data), which would allow more time, effort, and funding to be devoted 
to metrics development. One idea, as a first step toward a more coordinated international land model benchmarking 
activity, would be a joint benchmarking analysis project, wherein each of the existing packages is applied to a set of 
multi-model output that would enable direct comparison and evaluation of precisely how each package uniquely 
contributes to our understanding of model strengths and weaknesses.
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3.0 Current Status of the ILAMB  
 Software Packages
The complexity of today’s process-rich Earth system models poses a verification challenge to developers implementing 
new parameterizations or tuning process representations, and a validation challenge to modelers for comprehensive 
and multifaceted evaluation of model predictions. Model developers and software engineers require a systematic 
means for evaluating changes in model results to ensure that their developments improve the fidelity of the target 
process representations while not adversely affecting results in other parts of the model. To objectively assess the 
performance of such models and identify model weaknesses—supporting the goals of the ILAMB project—a first-
generation prototype benchmarking package and a second-generation package re-architected for better modularity 
and increased extensibility were developed. Called ILAMBv1 (Mu et al., 2016) and ILAMBv2 (Collier et al., 2016), 
respectively, both open source packages evaluate scientific model performance on 24 variables in four categories from 
about 45 data sets; produce graphical global-, regional-, and site-level diagnostics; and provide a hierarchical scoring 
system (Mu et al., in prep.).

At the previous ILAMB Workshop in the United States—held in Irvine, California, in January 2011—a methodology 
was developed for targeting aspects of model performance to be evaluated, identifying a set of benchmarks to test 
model performance, and guiding model improvements (Luo et al., 2012). Since that workshop, which advocated  
for near-term research efforts directed at developing a set of widely accepted benchmarks, the team of ILAMB 
developers and contributors have worked to design critical metrics for terrestrial model evaluation and to build 
software tools to evaluate those metrics and generate graphical diagnostics. Leveraging prior work on the Carbon-
Land Model Intercomparison Project (C-LAMP; Randerson et al., 2009), the ILAMBv1 and ILAMBv2 packages 
were developed with support from the Biogeochemistry–Climate Feedbacks Scientific Focus Area (SFA) project 
(https://www.bgc-feedbacks.org/; Appendix F.6). ILAMBv1 is written in the National Center for Atmospheric 
Research (NCAR) Command Language (NCL) and was released as a prototype at the American Geophysical Union 
(AGU) Fall Meeting in 2015. ILAMBv2 is written in Python and was released at this workshop.

Both ILAMBv1 and ILAMBv2 assess model performance for variables in categories of biogeochemistry (aboveground 
live biomass, burned area, carbon dioxide, gross primary production, leaf area index, global net ecosystem carbon 
balance, net ecosystem exchange, ecosystem respiration, and soil carbon), hydrology (evapotranspiration, latent 
heat, and terrestrial water storage anomaly), radiation and energy (albedo, surface upward shortwave radiation, 
surface net shortwave radiation, surface upward longwave radiation, surface net longwave radiation, surface net 
radiation, and sensible heat), and climate forcing (surface air temperature, precipitation, surface relative humidity, 
surface downward shortwave radiation, and surface downward longwave radiation). For each of these variables, the 
packages generate graphical diagnostics and score model performance for the period mean over whole years and its 
bias (Figure 3.1),RMSE, spatial distribution, interannual coefficient of variation, and seasonal cycle and long-term 
trend (Figure 3.2). Variable-to-variable comparisons, or functional relationships, are also diagnosed to show how well 
models capture global or regional prognostic behavior in relation to one or more forcing variables (e.g., gross primary 
production vs. precipitation).

Model performance scores are calculated for each metric and variable and are further scaled based on the degree of 
certainty of the observational data set, the scale appropriateness and spatial and temporal coverage, and the overall 
importance of the constraint or process to model predictions. Scores are aggregated across metrics and data sets, 
producing a single scalar score for each variable for every model or model version. In ILAMBv2, these scores are also 
presented graphically to indicate absolute performance in stop-light colors and intra-model relative performance 
(Figure 3.3). Both graphical representations are useful because the absolute performance shows which variables are 
captured well by the models, while the relative performance or Z-score indicates which models or model versions are 
doing a relatively better or poorer job of reproducing the variable in question.

ILAMBv1 has been applied to analyze results from a suite of models that participated in the 5th phase of the Coupled 
Model Intercomparison Project (CMIP5) and new model development underway for ALM and the Community 
Land Model (CLM). ILAMBv2 is routinely used to study the evolving performance of both ALM and CLM. While 
ILAMBv1 is continuing to be used for individual studies, all new metrics development is expected to take place 
in the ILAMBv2 package because it runs in parallel across multiple compute nodes and is more modular, flexible, 
and extensible.
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Figure 3.1. Shown here is the year 2000 pantropical forest biomass benchmark data (Saatchi et al., 2011) (top row 
left) and the Accelerate Climate Modeling for Energy (ACME) Land Model version 1 (ALMv1) annual mean biomass 
for years 1996 to 2005 (top row right). Below the horizontal line are maps of the bias from four models (CLM4.0-CN, 
CLM4.5-BGC, CLM4.5-BGC forced with GSWP3, and ALMv1). These biases are computed by subtracting the benchmark 
from the model annual mean biomass for years 1996 to 2005.

Figure 3.2. The ILAMBv1 
prototype compares the model 
and FLUXNET (Lasslop et al., 
2010) mean annual amplitude 
and phase of gross primary 
production (GPP) (top left); 
computes the annual mean, bias, 
and root-mean-square error 
(RMSE) of GPP (top right), and 
compares the full time series of 
GPP for prescribed regions.
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Within US Department of Energy (DOE)-sponsored 
projects, the ILAMB framework is not only being 
leveraged by the ACME project but is bridging with large 
measurement and modeling projects in DOE’s Terrestrial 
Ecosystem Science (TES) Program, including the Next 
Generation Ecosystem Experiments (NGEE) Arctic, 
NGEE Tropics, and Spruce and Peatland Responses 
Under Climatic and Environmental Change (SPRUCE). 
The ILAMB framework is developing and implementing 
metrics for new features of ALM, as a standard means 
for verifying model improvements. It is being adopted 
by TES projects to assist in development and testing of 
new process parameterizations, and as a mechanism for 
rapidly delivering observational data sets collected in the 
project to the modeling community. In addition, ILAMB 
is being used routinely to evaluate community-contributed 
enhancements to CLM within the Community Earth 
System Model (CESM) framework at NCAR. Both 
ACME and CESM are incorporating ILAMBv2 into their 
new workflow packages, so it will be run automatically as 
a standard post-processing step after executing a model 
simulation for rapid model development and assessment.

Figure 3.3. The ILAMBv2 package produces a summary graphic depicting 
model performance across a wide variety of variables, emphasizing 
absolute performance (left) as well as relative performance (right) with 
respect to comparisons with observations. This figure compares results 
from the ACME Land Model (ALM) run offline with carbon–nitrogen 
(CN) biogeochemistry (ALM_CN), run offline in satellite phenology (SP) 
mode (ALM_SP), and fully coupled in SP mode (ALM_WCYCL) with the 
Community Land Model (CLM) run offline for CLM-4.0 (CLM40cn), for 
CLM-4.5-BGC (CLM45bgc_CRUNCEP) and for CLM-4.5-BGC with Global 
Soil Wetness Project version 3 (GSWP3) forcing (CLM45bgc_GSWP3).
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4.0 Next Generation Benchmarking  
 Challenges
Maintaining and improving the scientific performance of today’s complex Earth system models (ESMs) requires 
comprehensive, multifaceted, and systematic evaluation, analysis, and diagnosis of model results. A widening range 
of in situ measurements and remote sensing observations is available for use in judging the fidelity of land surface 
and terrestrial ecosystem models. A variety of statistical approaches have been adopted to evaluate model accuracy, 
including calculations of bias, root-mean-square error (RMSE), phase, amplitude, spatial distribution, Taylor 
diagrams and scores, functional relationship metrics, and perturbation and sensitivity tests. While many of these 
statistical measures are not independent, each provides slightly different information about contemporary model 
performance with respect to observational data and about implications for future projections from ESMs.

Developing metrics that make appropriate use of observational data remains a scientific challenge because 
of the spatial and temporal mismatch between models and measurements, poorly characterized uncertainties in 
observationally constrained data products, biases in reanalysis and forcing data, model simplifications, and structural 
and parametric uncertainties. The modeling community, in direct collaboration with the observation community, 
should develop clear guidelines on how these measures may best be used and how they complement each other for 
different benchmarking purposes. For example, functional relationships or variable-to-variable comparisons can 
partially compensate for errors in forcing data and provide information on ecosystem responses by comparing the 
relationships between two variables from models and observations, thus offering a zeroth order characterization of 
overall model behavior with reduced sensitivity to biases in atmospheric driver variables. A second example is the use 
of results from perturbation experiments, which can be used to probe specific process representations in the models.

This chapter outlines important challenges and benchmarking opportunities identified by the research community for 
assessing the performance of ESMs. At the workshop, a set of breakout group meetings was held on benchmarking 
major Earth system processes and another set focused on cross-cutting benchmarking themes. For this report, 
the summary of a separate plenary presentation and discussion about eddy covariance flux networks was added 
to the section on Integrating and Cross-cutting Themes. The breakout group meeting reports—contained in the 
Appendix—provide supporting details for the following benchmarking topics:

KEY RECOMMENDATIONS
» Developing metrics that make appropriate use of observational data remains a scientific challenge that should be 

addressed through synthesis activities in collaboration with the modeling and observational communities.

» Common benchmarking challenges highlighted the need for collocated measurements and uncertainty information, 
functional response metrics, emergent constraints, combining observational products, upscaling measurements, and 
collaborations with modeling and measurement communities.

» Develop “super site” benchmarks—integrated with AmeriFlux and FLUXNET—with detailed process-specific 
observations and robust model driving data to attribute model biases to underlying mechanisms.

» Create benchmarks for soil carbon turnover and the vertical distribution and transport of soil organic matter. 

» Develop benchmark metrics for extreme event statistics, and on the response of ecosystems to extreme events.

» Synthesize data for vegetation recruitment, growth, mortality, and canopy structure, including disturbances, for 
benchmarking forthcoming demographic models.

» Develop a set of focused benchmarks for critical high latitude ecosystems, focusing on the dynamics of the coupled 
soil physical and biogeochemical system in permafrost-affected ecosystems.

» Create a set of focused benchmarks for tropical forest ecosystems, including observational targets for size-
structured vegetation models, and coupled carbon–nitrogen–phosphorus cycle models.

» Leveraging efforts in observational projects, construct a roadmap and new methods for creating remote sensing 
data products for benchmarking models.

» Develop meta-analyses of perturbation experiments (e.g., nutrients, hydrology, temperature, CO2) and related 
protocol for model comparisons.
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Major Processes (Appendix B)

» ecosystem processes and states (Appendix B.1)
» hydrology (Appendix B.2)
» atmospheric CO2 (Appendix B.2)

» soil carbon and nutrient biogeochemistry (Appendix B.4)
» surface fluxes (energy and carbon) (Appendix B.5)
» vegetation dynamics (Appendix B.6)

Integrating and Cross-cutting Themes (Appendix C)

» process-specific experiments (Appendix C.1)
» metrics from extreme events (Appendix C.2)
» design of new perturbation experiments (Appendix C.3)
» high latitude processes (Appendix C.4)

» tropical processes (Appendix C.5)
» remote sensing  (Appendix C.6)
» eddy covariance flux networks (Appendix C.7)

The most important new metrics, benchmarking approaches, and observational data needs—distilled from the 
workshop breakout group meeting reports—are identified below. A number of common challenges and opportunities 
emerged from these reports, and they are described in the sidebar on Common Benchmarking Challenges and 
Opportunities. Workshops or sustained research working groups organized to address these topics could be conducted 
in the same fashion as working group meetings offered by national research synthesis centers in the US. Such 
workshops would bring together topical experts (e.g., modelers, ecologists, observationalists, remote sensing experts, 
mathematicians, and computer scientists) to make rapid research progress on the science topics identified in the two 
subsections below.

4.1 Major Processes
4.1.1 Carbon and Energy Fluxes

Surface fluxes of carbon and energy are key inputs from land to atmosphere models, and observations of these 
variables have been used to benchmark carbon cycle, land surface, and Earth system models for several decades. 
Routine observations of these fluxes come primarily from eddy covariance flux measurement tower sites. Networks of 

COMMON BENCHMARKING CHALLENGES AND OPPORTUNITIES
A variety of common challenges and opportunities emerged from the individual breakout group meeting 
reports. Common themes focused on the following:

» need for collocated measurements, particularly around a core set of FLUXNET sites with a sustained record 
of observations for repeated model testing;

» lack of quantified uncertainty information for observational data;

» utility of functional response metrics and variable-to-variable comparisons;

» value of metrics for future projections based on emergent constraints;

» unrealized opportunities for global observational datasets based on satellite remote sensing synthesized 
with ancillary databases, using new algorithms;

» importance of applying statistical and machine learning methods to upscaling sparse measurements from 
sites to regions to the globe;

» need for process-level benchmarks and metrics for extreme events;

» opportunities for collaboration with Earth system model developers (e.g., ACME, CESM, and others); and

» opportunities for collaboration with important field and laboratory experiments and monitoring activities, 
including AmeriFlux and FLUXNET, the Integrated Carbon Observation System (ICOS), Next Generation 
Ecosystem Experiments (NGEE) Arctic, the Arctic–Boreal Vulnerability Experiment (ABoVE), the Spruce 
and Peatland Responses Under Climatic and Environmental Change (SPRUCE) project, Critical Zone 
Observatories (CZOs), Long-Term Ecological Research (LTER) sites, the National Ecological Observatory 
Network (NEON), NGEE Tropics, and the Tropical Responses to Altered Climate Experiment (TRACE).
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these sites, such as AmeriFlux (http://ameriflux.lbl.gov/) and the FLUXNET (https://fluxnet.ornl.gov/) network-
of-networks, have expanded rapidly over the last 25 years, and the data and meta-data they collect have been used 
in numerous model intercomparison and model–data comparison studies. Long term observations (>15 years) are 
available from an increasing number of sites, offering the opportunity to consider new studies of interannual to 
decadal variability, long term flux trends, ecological succession, multivariate climate response, and regional to global 
upscaling. While most of these sites are located in mid-latitude regions in North America and Europe, new sites are 
being deployed in the tropics, at high latitudes, and the undersampled Southern Hemisphere. The increasing density 
and widening spatial extent of sites, especially through organized and funded activities like ICOS (http://www.icos-
infrastructure.eu/) and NEON (http://www.neoninc.org/), further enable studies of storm systems and convection, 
monsoons, and large scale extreme events, as well as providing significant improvements in estimates of regional and 
global gross primary production and ecosystem respiration.

Scaling flux observations to regions or the globe produces very important data products for constraining models. 
Machine learning techniques that account for nonlinearities, like artificial neural networks and model tree ensembles, 
have produced the most promising results, but provide limited explanatory information. The FLUXNET-MTE 
product (Beer et al., 2010), considered to be a best estimate of global GPP distribution, is widely used both for model 
evaluation—including within the existing ILAMB system (Ghimire et al., 2016)—and model tuning, suggesting the 
need for complementary approaches (e.g., Kumar et al., 2016). Current upscaling approaches do not incorporate 
information about disturbance, canopy structure, and other legacy effects (e.g., wildfire, effects of extreme events, 
insect infestation, disease, blowdowns). However, ancillary databases now contain observations of disturbance and 
detailed biological metadata that could be combined with flux observations to improve upscaled estimates or model 
predictions of surface fluxes.

These data and improved process representation in ESMs present opportunities for new synthesis activities directed 
toward carbon and energy benchmarking. Significant progress in improving process understanding and constraining 
models could be made through studies focused on the following:

» Multifactor ecosystem responses to climate change, extreme events, and changes in seasonality, which should 
integrate new phenocam observations (Brown et al., 2016), remote sensing products (Reed et al., 2009), data from 
the National Phenology Network (NPN; https://www.usanpn.org/; Schwartz et al., 2012), similar observations 
from citizen science programs (Fuccillo et al., 2015), and ancillary databases

» Roles of extreme events and “return times” on ecosystem resilience (Zscheischler et al., 2013)

» Long term trends in light use efficiency, water use efficiency, evapotranspiration, and other quantities, some of 
which may yield new emergent constraints

» Relationships between forcing and response variables (e.g., stand age and net ecosystem exchange;  
Noormets et al., 2007)

» Top-down approaches to constraining surface fluxes using vertical measurements of atmospheric CO2 and other 
trace gases, and employing atmospheric inversion models (Xu et al., 2016)

» Synthesizing new observations from many data sets across space and time scales (e.g., FLUXNET, remote sensing, 
disturbance maps, etc.)

» “Super site” benchmarks developed around stable, long-running flux tower sites with a diversity of collocated 
measurements (e.g., AmeriFlux and FLUXNET, CZOs, LTER sites, or NEON sites)

» Upscaling point measurements, incorporating ancillary databases, to study areas, regions, continents, and the 
globe (Beer et al., 2010; Langford et al., 2016; Kumar et al., 2016)

A long-standing challenge to synthesis has been the reluctance of some researchers to share their eddy covariance 
flux data through openly distributed databases, like the FLUXNET2015 Dataset (http://fluxnet.fluxdata.org/data/
fluxnet2015-dataset/). While flux tower operators are increasingly convinced contributing their data is to their 
advantage, many researchers prefer direct involvement in synthesis working groups or workshops, which typically 
demonstrate the value of integrated analyses through high profile publications. Synthesis workshops would optimally 
involve modelers, flux tower operators, remote sensing observationalists, ecosystem ecologists, and mathematicians, 
and would be designed from the outset to produce original research papers and new synthesis or meta-analysis 
datasets for parameter optimization and model benchmarking. Additional details are contained in Appendixes B.5, 
C.7, B.3, B.1, and C.2.
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4.1.2 Soil Carbon and Nutrient Biogeochemistry

Earth’s soil holds roughly 2,000 Pg C, and soils have sequestered a significant fraction of CO2 emissions from fossil 
fuel burning and human land use change since the start of the industrial era. However, under continued climate 
change and human intervention, soil carbon (C) is expected to have strong feedbacks to the atmosphere, shifting  
the balance to make soil a significant source instead of sink of carbon. The soil sequestration strength is determined  
by turnover rates, which are functions of plant inputs from litter and losses via microbial decomposition. Both 
of these mechanisms are regulated by nutrient availability. Understanding how the C balance may shift is limited 
because many key processes that regulate soil C stocks are poorly represented or missing in ESMs. The soil C stocks 
produced by current ESMs (CMIP5 models) are in only fair agreement with global soil C distributions, and the 
models are unable to reproduce local to regional scale spatial soil C patterns or to quantify bulk C stocks  
(Todd-Brown et al., 2013).

Traditionally, model evaluations have focused primarily on whether models can reproduce observed time series or 
spatial patterns in observational data (e.g., soil C stocks). Such benchmarks provide initial insights in model–data 
discrepancies, but offer limited insights into the sources of these differences. Benchmarks should be designed 
to test the representation of important controlling mechanisms (e.g., soil carbon age determined from isotope 
measurements; He et al., 2016) and environmental factors (Mishra and Riley, 2015), and benchmark datasets should 
include metadata to determine the appropriateness of comparisons and offer robust estimates of data uncertainties.  
To address challenges to ESM representation of soil C stocks and fluxes, scientific priorities for synthesis studies 
include the following:

» Developing improved benchmarks of soil C turnover through evaluation of soil nutrient biogeochemical processes, 
including (1) cycling of nitrogen (N) and phosphorus (P) and their interactions with ecosystem productivity and 
decomposition (e.g., Bouskill et al., 2014; Zaehle et al., 2014; Yang et al., 2016) and (2) competition for nutrients 
among microbes, plants, and mineral surfaces (Tang and Riley, 2013; Zhu et al., 2016)

» Representing the vertical distribution and transport (e.g., bioturbation and cryoturbation of soil organic matter 
(SOM), particularly at high latitudes, and synthesizing data on radiocarbon ages and C stocks to evaluate these 
parameterizations (Braakhekke et al., 2014; Koven et al., 2013; 2015; Riley et al., 2014; Tang et al., 2013;  
He et al., 2016)

» Evaluating models on their ability to simulate ecosystem responses to natural or anthropogenic disturbances and 
extreme events to highlight or expose processes critical to important phenomena

» Developing and applying emergent constraints based on carbon storage and turnover times to provide limits  
or bias corrections on future projections (Hoffman et al., 2014; He et al., 2016)

» Improving and harmonizing mapping and upscaling of global soil properties, especially for wetlands, tropical  
and boreal peatlands, and permafrost regions (Mishra et al., 2013; 2016; Mishra and Riley 2015)

Synthesis activities involving modelers, soil biogeochemists, microbial ecologists, and mathematicians could address 
the topics above. New collaborative research in these areas should focus on meta-analyses and developing new datasets 
useful for benchmarking models. Additional details are contained in Appendixes B.4, B.1, and C.2.

4.1.3 Hydrology

The key role of hydrology in land surface models (LSMs) is to partition incoming precipitation water into 
evapotranspiration, runoff (streamflow), and changes in soil moisture storage. These water cycle calculations are 
intrinsically tied to energy and carbon balance calculations. Soil moisture lies at the heart of land surface control over 
moisture fluxes, including both evapotranspiration and runoff. Hydrological processes operate across a range spatial 
and temporal scales, and LSMs in most ESMs attempt to approximate their effects using one-dimensional physics 
with varying degrees of complexity in the vertical direction. Groundwater formulations are restricted by the lack of 
lateral fluxes, surface reservoirs and impoundments are absent, and river and dam management is not considered in 
these models. Nevertheless, current process representations can be evaluated using a growing collection of in situ and 
remote sensing data. The greatest opportunities for improving water cycle benchmarking lie in synthesizing multiple 
datasets and developing metrics for related variables that indirectly constrain water fluxes. To improve hydrological 
evaluation of models and inform future model development, scientific priorities for hydrology benchmarking include 
the following:
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» Benchmarking runoff and streamflow-related processes with Model Parameter Estimation Experiment (MOPEX; 
Duan et al., 2006) data for headwater watersheds in the US and Global Runoff Data Center (GRDC; Fekete et 
al., 2002) data globally

» Evaluating model performance in reproducing slow versus fast hydrological responses and capturing the impact of 
managed streamflow, including mapping of unmanaged watersheds

» Producing benchmark datasets for weather and climate extremes (WCEs), including shifts of the ITCZ and 
other circulation patterns, hydroclimatic intensity, flood inundation extent and duration, rainfall deficits, and 
experimentally induced extremes (e.g., throughfall exclusion and warming)

» Synthesizing many in situ soil moisture measurements from a wide collection of field activities with satellite 
remote sensing (e.g., SMOS, SMAP, ASCAT, GRACE) into a long-term dataset

» Developing a global-scale snow water equivalent (SWE) dataset

» Designing indirect benchmarking metrics for global-scale hydrology (e.g., estimate evapotranspiration from 
streamflow and diurnal temperature cycles from latent heat flux)

Synthesis studies involving modelers, hydrologists, ecohydrologists, and mathematicians could address the topics 
above. New collaborative research in these areas should focus on collecting and constructing new datasets, particularly 
for managed systems, and on developing new indirect metrics, particularly from remote sensing, for benchmarking 
models. Additional details are contained in Appendixes B.2, C.2, C.3, C.6, and B.1.

4.1.4 Vegetation Dynamics and Biomass

Vegetation dynamics refers to changes in ecosystem composition and structure through processes that include 
recruitment, succession, growth, mortality, and disturbance. In many LSMs, vegetation distribution is prescribed, 
making metrics of vegetation dynamics valuable only for testing model behavior of dynamic vegetation models 
(DVMs) that prognostically redistribute plants, or plant functional types (PFTs), across the landscape. In the last 
decade, vegetation demographic models (VDMs) have emerged that simulate light-competition driven coexistence 
and competition of PFTs through representation of varying tree size (e.g., cohorts or individuals) in the vertical 
canopy structure and successional dynamics through representation of disturbance history.

Over time, new data suggest that previous estimates of global vegetation biomass, both above and belowground 
combined, may be too high. Since most ESMs project higher global live biomass in the contemporary era than recent 
observations, the carbon storage potential in terrestrial vegetation and the turnover time of vegetation are in question 
(Negron-Juarez et al., 2015; Koven et al., 2015) . Many regional biomass products exist, but they tend to be limited 
to forests only or account only for aboveground live biomass. Additional studies that further constrain biomass 
inventories and how they evolve over time and respond to increasing atmospheric CO2 are needed. To improve 
evaluation of vegetation dynamics in ESMs, particularly as VDMs become available, synthesis activities should 
address the following:

» Developing synthesis datasets for recruitment, mortality, and canopy structure from plot-scale measurements 
(e.g., Forest Inventory and Analysis (FIA); Johnson, Xu, McDowell et al., in prep.), AmeriFlux and FLUXNET, 
ForestPlots, ForestGEO, and national inventories for constraining models

» Comparing models with multiple burned area fire products, including GFED3, L3JRC, MCD45A1, Fire_cci, and 
the Global Fire Assimilation System

» Developing metrics based on multiple satellite remote sensing products for phenology, canopy height, and land 
cover to allow for characterization of uncertainties across classifications

» Creating metrics for vegetation responses to weather and climate extremes (WCEs), including disturbances from 
tornadoes and straight line winds, early/last frosts, hail streaks, and flooding

» Searching for emergent constraints based on organic carbon inventories and turnover times to provide limits or 
bias corrections on future projections (Hoffman et al., 2014)

» Developing benchmark datasets on repeated observations of remotely-sensed biomass to constrain biomass change 
over time (the most direct cumulative measure of carbon sink activity over time and a high priority to distinguish 
between different model predictions of the control of the terrestrial carbon sink)



19

» Participating in FireMIP to support new fire-related metrics and encouraging similar model intercomparisons for 
ecological networks like Drought-Net and Nutrient Network (NutNet)

» Developing maps of plant traits, land use change, disturbance, and mortality from wildfire, deforestation, drought 
stress, insects, and disease

Working groups involving modelers, ecosystem ecologists, foresters, and mathematicians could address the topics 
above. New collaborative research in these areas should focus on developing meta-analyses from widely dispersed 
field measurements to characterize recruitment, mortality, canopy structure, and biomass inventories, and developing 
metrics from remote sensing products for phenology, canopy height, and land use/land cover change. Additional 
details are contained in Appendixes B.6, C.2, C.6, B.5, C.7, and B.1

4.2 Integrating and Cross-cutting Themes
4.2.1 High Latitude Processes

Northern high latitude soils contain about twice as much carbon as in the atmosphere (Hugelius et al., 2014). This 
enormous carbon pool is vulnerable to accelerated losses through mobilization and decomposition under anticipated 
warming scenarios, with potentially large global carbon and climate impacts (Koven et al., 2011; Schaefer et al., 2011; 
Schuur et al., 2015). Many processes control the response of this carbon pool to changing environmental conditions. 
For example, active-layer dynamics, thermokarst formation, thermal erosion, shrub expansion, fire disturbance, soil 
moisture heterogeneity, and the overall rate of wetting and drying that will accompany warming. These processes 
impact the vulnerability of permafrost carbon pool through different mechanisms. Active layer thickness determines 
the volume of SOC available for microbial decomposition, and has been projected to go deeper under future 
warming. Thermokarst formation on the permafrost landscape enhances methane emissions to the atmosphere. 
Thermal erosion due to permafrost collapse can increase microbial decomposition and translocate large amounts 
of soil carbon to river networks. Increased wildfire occurrence has been projected under future warming scenarios; 
wildfires can directly combust the carbon in the surface organic layers and may alter the soil moisture dynamics. 
Similarly, many studies projected shrub expansion northwards under future warming, which can further destabilize 
the existing permafrost.

Because high latitude ecosystems are governed by extremely strong gradients in temperature and moisture, both 
vertically and horizontally, benchmarks must assess the coupled nature of biophysical and biogeochemical processes 
through variable-to-variable relationships in these regions (Harden et al., 2012; Koven et al., 2013; Bouskill et 
al., 2014). A wide variety of datasets are needed for next-generation benchmarking of ESMs at high latitudes, 
including maps of soil carbon that provide vertical profiles of carbon and isotopic age data, geographic distributions 
and dynamics of vegetation across boreal–tundra ecotone, relationships between snow properties and soil thermal 
dynamics, traits for vascular and nonvascular plants, and large-scale distributions of permafrost extent and active 
layer thickness. Research in DOE’s NGEE Arctic project is directed at understanding the heterogeneity of polygonal 
tundra ecosystems, representing that heterogeneity in  ESMs, and developing benchmarks to testing land models at 
high latitudes. To advance benchmarking of critically important processes with potentially large climate–carbon cycle 
feedbacks, collaborative research and synthesis activities should be focused on the following:

» Leading or strongly contributing to an independent research working group addressing synthesis of existing 
research and assessment of high latitude terrestrial processes affecting permafrost stability and feedbacks and 
developing potential emergent constraints in similar fashion to the Permafrost Carbon Network (PCN;  
http://www.permafrostcarbon.org/)

» Developing meta-analyses and synthesizing data to create high latitude benchmarks from in situ field 
measurements and experiments and remote sensing data in direct collaboration with researchers from DOE’s 
NGEE Arctic, NASA’s ABoVE (Xu et al., 2016), and NSF’s Arctic science, observational, and monitoring projects

» Improving and harmonizing mapping of SOM and other soil properties in boreal peatlands and permafrost 
regions (Mishra et al., 2013; 2016)
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» Developing and improving benchmarks of the coupled physical–biogeochemical dynamics of energy, moisture, 
nutrient, and carbon exchange across the permafrost–organic layer–snow–atmosphere system, and across 
heterogeneous landscape features that characterize patterned ground, to test models that increasingly represent the 
complex feedbacks that result from these coupled processes

» Applying statistical and machine learning methods to remote sensed and in situ data to understand the 
representativeness of measurements and intelligently scale sparse, difficult-to-obtain observations across the Arctic 
(Hoffman et al., 2013; Kumar et al., 2016)

» Implementing a model–data integration framework that addresses key indicators of high latitude ecosystem 
change as part of NASA's ABoVE program

Synthesis activities involving modelers, Arctic ecosystem ecologists, soil biogeochemists, hydrologists, and 
mathematicians could address the topics above. New collaborative research in these areas should focus on developing 
datasets and evaluating ESM fidelity for high latitude processes related to vegetation, soil biogeochemistry, and 
the physical snow-soil-hydrological system. In particular, functional relationships between biological, chemical, 
and physical variables and emergent characteristics (e.g., active layer thickness) should be examined to improve 
understanding of the process interactions and assess the credibility of model responses. Additional details are 
contained in Appendixes A.4, C.4, B.4, C.1, and C.6.

4.2.2 Tropical Processes

Tropical ecosystems present many processes that overlap with those in other biomes but also have additional 
complexity that makes modeling and benchmarking a distinct challenge from that of other regions. These include 
challenges related to high biodiversity, its representation in simulations, and its role in buffering ecosystem responses 
to perturbations. Advanced modeling and benchmarking have revealed challenges in representing carbon metabolism 
and the wide variety of above and belowground traits as they relate to water acquisition and use. Benchmarking has 
exposed these challenges through comparison to drought experiments and atmospheric constraints, with previous and 
current MIPs providing insights into the advantages and disadvantages of various numerical representations. While 
advances have been made, most work has pointed to the critical need for more extensive benchmarking of a range of 
processes at a range of scales, along with associated UQ and new model development.

Representing these processes is particularly crucial since tropical forests are predicted by the CMIP5 generation 
of ESMs to be particularly important for both the carbon–climate and carbon–concentration feedbacks. This 
importance led to the focus of the NGEE Tropics project to develop and synthesize key datasets required to test the 
representations of tropical forest dynamics in ESMs, as well as to develop and integrate into ESMs novel modeling 
approaches for representing these processes. To advance benchmarking of tropical ecosystem processes important to 
climate–carbon cycle feedbacks, collaborative research and synthesis activities should be focused on the following:

» Synthesizing spatially distributed inventories of size distributions, recruitment, growth, mortality, litterfall, and 
other ecosystem processes from the RAINFOR, CTFS-ForestGEO, AmeriFlux and FLUXNET, and GEM 
networks in direct collaboration with the NGEE Tropics project

» Collecting and developing benchmarking datasets for perturbation experiments and extremes in the tropics, 
including drought (e.g., Drought-Net), increased atmospheric CO2 (e.g., Amazon FACE), nutrients (e.g., N, P), 
and increased temperature

» Modeling climate change to search for carbon cycle tipping points and possible emergent constraints associated 
with tropical ecosystems

» Taking advantage of naturally occurring events, (e.g., El Niño-induced tropical drought) to synthesize 
observational data for comparison with ecological forecast and retrospective modeling

» Combining inventory estimates, in situ process measurements, flux data, and remote sensing to characterize plant 
traits and physiological processes at larger scales and for regions with poor spatial coverage (e.g., western Amazon, 
tropical Africa, and Indo-Pacific) through statistical and machine learning upscaling methods

Research teams involving modelers, tropical ecosystem ecologists, soil biogeochemists, hydrologists, and 
mathematicians could address the topics above. New collaborative research in these areas should focus on developing 
improved inventory datasets and creating benchmarks for new demographic models for growth and mortality, tree 
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height and biomass, turnover of litter and stemwood, sap flow, tissue water potential and root water uptake, and 
nutrient constraints on carbon cycling. Additional details are contained in Appendixes C.5, B.6, B.5, C.7, B.2, C.2, 
B.1, and C.6.

4.2.3 Remote Sensing

The large extent and high diversity of vegetation comprising Earth’s biomes present a significant challenge for 
local to global-scale terrestrial ecosystem process modeling efforts, including benchmarking and evaluation of 
model projections. To provide the knowledge and understanding necessary to improve model parameterizations, 
representation and evaluation of alternative model structures and observations are needed at the relevant spatial and 
temporal scales for controlling processes. The general goal of remote sensing from leaf to global scales is to provide 
critical information on ecosystem dynamics (e.g., seasonality, response to perturbations), and states (e.g., composition, 
structure, biomass), as well as to scale, map, and monitor important ecosystem properties and processes across 
space and through time. Compared with other observational and model evaluation datasets (e.g., inventory, eddy 
covariance, manipulation, and global change experiments), remote sensing data provide the synoptic, continuous, and 
temporally frequent observations needed for site to global model benchmarking. Moreover, the relative magnitude 
of remote sensing datasets of various types and temporal extents has helped to usher in the current data-rich era in 
ecology and global modeling, providing large volumes of information across scales that could be leveraged within data 
assimilation frameworks for model calibration and development activities.

Remote sensing observations and products useful for model evaluation span a fairly broad range of scales (temporally 
and spatially) as well as biophysical properties such as leaf area index (LAI) and the fraction of photosynthetically 
active radiation absorbed by vegetation (e.g., Myneni et al., 2002; Baret et al., 2007), states such as biomass (e.g., 
Saatchi et al., 2011), soil or canopy moisture (Petropoulos et al. 2015; Schimel et al., 2015), energy balance products 
such as surface albedo (Schaaf et al., 2002), to process-level observations, including evapotranspiration (Mu et al., 
2011), photosynthesis (e.g., Running et al., 2004; Ryu et al., 2011; Guanter et al., 2014; Serbin et al., 2015), and 
plant functional traits (e.g., Asner et al., 2015; Singh et al., 2015). Calibration of algorithms for the retrieval of 
measurements using remote sensing observations vary in approach and complexity but generally require some degree 
of the physical relationship as well as independent information from ground or other observations for evaluation 
prior to any scientific or modeling use. In addition to other smaller campaigns, past and ongoing global change 
manipulations (e.g., DOE’s FACE and SPRUCE), field experiments, and large-scale projects such as the DOE’s 
NGEE Arctic and Tropics projects, as well as NASA’s ABoVE, provide ample opportunities to refine remote sensing 
methods and products for use within ILAMB and elsewhere (Schmid et al., 2015). To accelerate and standardize the 
use of remote sensing for model benchmarking, collaborative research and synthesis activities should be focused on 
the following:

» Constructing a roadmap for remote sensing data product generation that takes into account enhanced 
cyberinfrastructure for large-scale remote sensing data (Williams et al., 2016) and new data product development 
for evaluation of process models from site to global scales (Schimel et al., 2015)

» Developing satellite simulators within ESMs that calculate an observable variable expected from remote sensing 
instruments under the given conditions

» Leveraging remote sensing efforts in DOE’s NGEE Arctic, NGEE Tropics, and SPRUCE projects (and in 
collaboration with NASA’s ABoVE and NSF’s NEON projects) to develop and test algorithms for image 
processing, calibration, and uncertainty characterization, and to evaluate approaches for data retrieval and scaling

» Developing community guidelines for appropriate use of remote sensing data as benchmarks and observations for 
data assimilation

» Fusing data from multiple instruments (e.g., visible, TIR, LiDAR), data streams, or products for new synthetic 
observational datasets for hydrologic states and fluxes, carbon cycle fluxes, and vegetation trait and other properties

Remote sensing working groups involving modelers, ecosystem ecologists, geographers, remote sensing experts, and 
mathematicians could address the topics above. New collaborative research in these areas should focus on developing 
remote sensing products for plant traits, canopy structure, ecosystem responses to extreme events, solar-induced 
fluorescence, and carbon cycle fluxes (e.g., GPP, NPP, NEE). Additional details are contained in Appendixes C.6, C.1, 
C.3, C.4, C.5, B.2, B.6, and B.3.
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4.2.4 Process-specific and Perturbation Experiments

To become more robust, Earth system models should undergo structural improvements to represent more real 
world processes (Knutti and Sedlacek, 2013; Luo et al., 2016). Given the enormous complexity of Earth system 
processes, it is still challenging to (1) specify which processes are more critical than others in regulating Earth system 
dynamics, such as climate change; and (2) evaluate representation of processes that have been widely incorporated 
but diversely parameterized in different models. One promising approach to solving this challenge is using process-
specific experiments, which can evaluate and improve the model representation of a specific key process through 
comparison with observations. Key processes to target, for which models are highly parameterized or have major 
structural uncertainties, include decomposition, nitrogen cycling, autotrophic respiration, chlorophyll fluorescence, 
phenological sensitivity to climate, and plant trait correlations and trade-offs.

Direct perturbation of environmental properties is one of the most direct ways of assessing ecosystem responses 
to environmental change. Such experiments—which include perturbation of nutrients, species composition, 
precipitation, temperature, atmospheric chemistry, CO2 concentration, or multiples of these factors—have been 
conducted across a wide range of experimental systems. In some cases, the resulting datasets have been synthesized 
and are ready for model benchmarking, while others require effort to synthesize and standardize reporting of results. 
Care is required to avoid scale mismatches and most effectively apply an analog to the experimental perturbation 
within models. In addition, the mechanistic response of the ecosystem to the perturbation must be understood, 
so that models exhibiting the correct response for the wrong reason can be recognized. Performance of model runs 
early in the process of defining an experimental perturbation may be useful in identifying specific processes and 
assumptions on which models disagree, and they may inform data collection strategies to be most relevant to model 
benchmarking efforts (Medlyn et al., 2016).

To advance process-level benchmarking of ecosystem models, collaborative research and synthesis activities should be 
focused on the following:

» Selecting a core set of AmeriFlux and FLUXNET sites that span major biomes to serve as long-term testbeds 
for ILAMB, collecting all associated data and metadata (e.g., meteorological forcing, soil texture, land use 
history, and plant traits) necessary for conducting model simulations, and constructing or synthesizing a series 
of independent benchmark datasets (e.g., net fluxes, biometrics, and experimental data) for diagnosis of model 
process representations

» Collaborating with DOE’s SPRUCE project to collect data and synthesize benchmark datasets for diagnosis of 
model responses to prescribed perturbations for a northern peatland

» Collaborating with DOE’s NGEE Arctic project (i.e., small-scale warming and isotopic tracers) to collect data and 
synthesize benchmark datasets

» Collaborating with DOE’s LBNL TES soil perturbation project to collect data and synthesize benchmark datasets 
for soil organic matter responses to temperature and moisture 

» Synthesize existing nutrient (e.g., Bouskill et al., 2014; Zhu et al., 2016), temperature, and moisture perturbation 
experiments with meta-analyses appropriate for model benchmarking, and concurrently developing guidance for 
performing relevant model analyses

» Opportunistically using measurements during weather and climate extremes in lieu of perturbation experiments to 
develop benchmarks for vegetation and soil biogeochemical responses

» Incorporating the FACE Synthesis (Zaehle et al., 2014) protocol and data into ILAMB in collaboration with 
original synthesis participants

» Collaboration with TRACE, ITEX, and other soil warming experiment teams to develop modeling protocols, 
collect forcing data, and synthesis results for benchmarking

Synthesis activities involving modelers, ecosystem ecologists, field and laboratory experimentalists, remote sensing 
experts, and mathematicians could address the topics above. New collaborative research in these areas should focus on 
developing simulation protocols, forcing datasets that correspond to the observed meteorology and any perturbation 
applied, and data for benchmarking ecosystem responses. Additional details are contained in Appendixes C.1, C.3, 
B.5, C.7, B.4, and C.2.
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5.0 Model Intercomparison Projects  
 (MIPs)
5.1 The Roles of Benchmarking in MIPs
Model Intercomparison Projects (MIPs) are important activities for assessing the coherence and reliability of Earth 
system models. By adopting a common set of protocols with clearly defined inputs and outputs, model predictions 
can be compared systematically to each other and benchmarked with observations. A number of ongoing and future 
MIPs are directly relevant to the modeling of the terrestrial water, energy, and carbon cycles, and many of these were 
discussed at the ILAMB Workshop. Some are conducted under the auspices of the 6th phase of the Coupled Model 
Intercomparison Project (CMIP6) project, while others are separate activities. The goal of this section is to summarize 
these MIPs, their different scientific objectives, protocol designs, and the opportunities for land model benchmarking 
that each presents.

5.2 Descriptions of MIPs and Their Benchmarking  
 Needs
5.2.1 CMIP6 Historical and DECK

As part of the CMIP6 process, each participating model will conduct a set of runs called the Diagnostic, Evaluation, 
and Characterization of Klima (DECK) experiments (Eyring et al., 2016b). These simulations comprise four 
experiments: a land–atmosphere only model forced by reconstructed historical sea surface temperatures (i.e., 
Atmospheric Model Intercomparison Project (AMIP)), a coupled land–atmosphere–ocean preindustrial control, an 
abrupt quadrupling of CO2, and an idealized 1% per year CO2 increase. Furthermore, each model will perform a set 
of historical simulations with the coupled atmosphere–ocean–land models. For the preindustrial control and historical 
simulations, models with active carbon cycles will run these with both prescribed atmospheric CO2 concentrations 
and prescribed emissions, and this offers a key opportunity to test the ability of the models to predict the evolution 
of atmospheric CO2 over the historical period (Hoffman et al., 2014). Furthermore, large-scale dynamics of model-
predicted historical climate variables may be compared with corresponding observations from in situ and remote 
sensing methods.

5.2.2 C4MIP

To isolate carbon feedbacks in the Earth system, the Coupled Climate–Carbon Cycle MIP (C4MIP) (Jones et 
al., 2016) will separately force the coupled land–atmosphere–ocean system with CO2 that acts only on plant-
physiological and ocean-solubility processes, and separately only on radiative processes. This allows separating the 
carbon–concentration feedback, which acts to stabilize the climate system, from the carbon–climate feedback, which 
acts to destabilize the climate system. Furthermore, fully-coupled future ESM experiments are included, in which 
CO2 emissions rather than concentrations are used to force the model and CO2 is allowed to evolve in time. Previous 
versions of the C4MIP experiments (Friedlingstein et al., 2006; 2014a) demonstrated a poor ability of ESMs to agree 

KEY RECOMMENDATIONS
» Develop methods to attribute emergent model behaviors such as carbon feedback parameters to specific 

processes through emergent constraint and traceability approaches.

» Benchmark across coupling and complexity hierarchies—from offline land-only simulations to fully 
coupled ESMs—to attribute model biases and uncertainties to specific domains and identify feedbacks 
between domains.

» Develop paired site datasets for benchmarking mode representations of subgrid scale heterogeneity.
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on the basic trajectory of terrestrial carbon budgets in response to global change, and this lack of agreement has 
provided a strong impetus for better benchmarking and validating terrestrial carbon cycle models over the historical 
period to constrain future trajectories. Furthermore, the CMIP6 iteration of C4MIP has identified key uncertainties 
that were poorly represented in prior generation ESMs, including nutrient cycles, permafrost-related processes, and 
the use of carbon isotopes as a possible diagnostic tool for reducing uncertainty in carbon cycle processes.

5.2.3 LS3MIP

The Land Surface, Snow and Soil Moisture Model Intercomparison Program (LS3MIP) (van den Hurk et al., 2016) 
contains a series of coupled and offline experiments to isolate the roles of terrestrial energy, water, and carbon cycles in 
leading to inter-model differences and biases. Included in the LS3MIP protocol are a series of offline experiments, in 
which the land models will be forced with a common set of meteorological drivers: Tier 1 experiments will be driven 
by GSWP3 (Kim et al., in preparation); Tier 2 experiments will also include WATCH (Weedon et al., 2011), CRU-
NCEP (Viovy and Ciais, 2011), and Princeton (Sheffield et al., 2006) drivers. This will allow both the separation 
of terrestrial model performance from atmospheric model performance and the role of the uncertainty of historical 
meteorology on land model performance. In addition, LS3MIP experiments include a set of future land-only 
time-slice simulations driven by common model-produced meteorology; and prescribed land-surface experiments, 
following the GLACE protocols (Koster et al., 2004; Seneviratne et al., 2013) for evaluating land-surface feedbacks to 
climate. Crucial to all of these experiments is accurate knowledge of the soil moisture and snow fields, and moisture 
and energy fluxes, for diagnosing biases in the land-only model experiments and accurate prescriptions of the land-
surface fields in the prescribed land-surface experiments.

5.2.4 LUMIP

The Land Use Model Intercomparison Project (LUMIP) is focused on understanding the complex roles of land use 
and land cover change (LULCC) as forcing agents in the Earth system. LUMIP includes a series of experiments 
to better identify and attribute physical and biogeochemical effects of land use, including offline and coupled 
experiments that are performed with and without land-use change, and a detailed reporting specification of subgrid 
land model states and fluxes in other CMIP6 experimental runs. Key to benchmarking land use effects are paired 
observations subject to the similar meteorology but including different land uses and histories, and comparison of 
these paired sites with sub-gridscale information on land surface heterogeneity due to land use within land models.

5.2.5 MsTMIP

The Multi-scale Synthesis & Terrestrial Model Intercomparison Project (MsTMIP) is designed to evaluate land model 
skill as driven by common meteorology, spinup, land surface, and other drivers. Experiments include a sequentially-
added forcing design, including drivers of climate, CO2 concentrations, land cover, and nitrogen deposition. 
MsTMIP is not a CMIP6 project and thus includes participation of models that are run only offline. Phase 1 
MsTMIP experiments were focused on the historical period, and Phase 2 consists of future experiments. Phase 2 of 
MsTMIP will employ a novel computational infrastructure, the JPL “model farm,” in which all of the participating 
models are run on a single machine to ensure that they are treated identically with respect to inputs, outputs, 
and protocols.

5.2.6 PLUME-MIP

Processes Linked to Uncertainties Modelling Ecosystems (PLUME-MIP) also uses a set of offline climate-driven 
land models to attribute changes in modeled carbon cycle responses to global change to its underlying drivers. The 
novel aspect of this MIP is the use of a recently developed traceability framework (Xia et al., 2013) to disaggregate 
the differences between models into underlying drivers, such as changes in productivity and changes in turnover 
of various pools (Ahlström et al., 2015; Koven et al., 2015). To accomplish this disaggregation, a new set of model 
diagnostics is required, in particular to diagnose changes to turnover times under simultaneously changing inputs and 
model pool transfer rates (Rasmussen et al., 2016).
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5.3 New Metrics, Approaches, and Model  
 Output Requirements
A variety of benchmarking metrics approaches have been integrated into the first version of ILAMB to allow testing 
of models at multiple spatial, temporal, and complexity scales. These include: (1) site-level comparison of water and 
energy fluxes between model gridcells and flux towers; (2) global- and regional-scale comparison of gridded data 
products from remote sensing, point-based upscaling, or data assimilation approaches with corresponding fields from 
offline and coupled land models; (3) comparison of Earth system-integrative measures such as atmospheric CO2 fields 
between observations and models.

These multiscale approaches are useful for covering the broad range of scales that encompass observational networks 
and over which the relevant processes represented in ESMs operate. However, model configurations used in the first 
generation of ILAMB span only three configurations: (1) offline global model runs forced by bias-corrected historical 
reanalysis data and historical land use data; (2) coupled global atmosphere–ocean–land model runs forced by time-
varying land use and trace gas concentrations; and (3) coupled global atmosphere–ocean–land model runs forced by 
time-varying land use and fossil fuel emissions, with CO2 transport either predicted by the atmospheric model or 
calculated from an offline transport model. Only gridcell-mean properties were tested, and site-level data was based 
on extracting individual gridcells from global runs.

The larger diversity of model couplings and experimental protocols in the current and upcoming generation of 
MIPs suggests that a more comprehensive strategy is needed for both model–data benchmarkings and model–model 
comparisons to best utilize the information in these MIPS. Benchmarking approaches require a high degree of 
correspondence between the periods of observation and model scenarios, and the ability to benchmark models is 
always contingent on the fidelity with which the inputs required to simulate the observations correspond to reality; 
however, this correspondence may span a wide diversity of coupling complexity. Possible couplings include (1) 
site-level comparisons where the model is driven by site-level observations; (2) offline global models forced by a 
variety of meteorology datasets; (3) prescribed land-surface experiments as in LS3MIP, where certain land states 
are initialized to observations in a coupled land–atmosphere framework; (4) AMIP runs where atmospheric model 
uncertainty is added but sea surface temperatures (SSTs) are constrained to historical dynamics; (5) fully physically 
coupled runs with atmospheric and ocean model dynamics present; and (6) physically and biogeochemically coupled 
simulations. Each of these experimental configurations allows potentially different comparisons between models and 
datasets to be made to benchmark the ESMs across both a wide range of variables and a scale of complexity in Earth 
system components. To effectively leverage these different MIPs and allow benchmarking approaches to span these 
complexity hierarchies, it would be ideal to develop within ILAMB the capability to span across different coupling 
strategies to track which aspects of a given ESM are benchmarked by different comparisons and assign metrics that 
take a system-centered view of ESMs.

New models outputs will be required for effectively using many of these MIP activities as benchmarking tools. 
Among the new outputs are model subgrid information, as specified in the LUMIP protocol. This will enable 
benchmarking with consideration that site-level observations correspond only to a subset of a model gridcell, and 
of LULCC-related heterogeneity in ESMs. Further, whereas benchmarking with observational datasets can only 
occur for model variables that correspond directly to observable quantities, non-observable model outputs, such as 
turnover times and disequilibrium fluxes as identified through a traceability framework, may still be of great use in 
understanding and diagnosing model behaviors. Furthermore, better instrumenting models to output quantities such 
as isotopic pools and fluxes, or ecosystem structural information such as tree size distributions (which allow deeper 
model introspection and process-resolved benchmarking), will be crucial to test increasingly complicated ESMs.

5.4 Available Observations and Data Gaps
ILAMB as it is currently built is able to use a wide variety of global-scale and regional-scale gridded observations, site-
specific observations, and integrative observations. Increased use of each of these types of observations would allow 
a more robust model benchmarking framework. For offline models and MIPS, key required observations are better 
meteorological driving datasets for the models. These include both global-scale bias-corrected reanalysis products and 
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site-scale driving data to allow better comparisons of models with site-scale data. Furthermore, driving data of other 
anthropogenic forcings, such as LULCC, nutrient deposition, aerosol effects, and other processes, have considerable 
uncertainty that propagates through models and complicates the interpretation of model-benchmark differences. 
Observations of subgrid scale heterogeneity, for example through the use of remote sensing approaches and paired 
site-scale observations, will enable better testing of subgrid scale approaches in models, which is crucial as models 
evolve to have numerous sources of heterogeneity, including topographic position and land-use histories. Moving 
beyond the mean gridcell value of a given variable will require observations that maintain the full distribution of a 
given property across a gridcell-sized domain rather than just reporting mean values at the scale of gridcells.

5.5 Expected results from MIPs and ILAMB 
The key goal of benchmarking activities is to reduce the uncertainty associated with directly testable model 
predictions. Although there will always remain an irreducible uncertainty arising from issues such as equifinality, 
uncertainty in future drivers, and uncertainty in current observations, there is currently a wide divergence in 
model predictions for things that can be directly and robustly observed that is contributing to the poor predictive 
capability of terrestrial models (e.g., Hoffman et al., 2014). New MIP activities, and the associated benchmarking 
opportunities that they represent, offer promise that we as a community can build models that are far more 
constrained by observations such that the remaining uncertainty will be due to genuinely unknown rather than 
simply untested processes.
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6.0 Model Development and  
 Evaluation Testbeds
Land surface model components of ESMs are experiencing dramatic changes as new process representations are added 
and software infrastructures are altered to support more detailed demographic and plant trait formulations. Moreover, 
alternative parameterizations for major submodel components (e.g., soil biogeochemistry) are being introduced into 
land models to test competing model structures and parameterizations at different spatial and temporal scales. To 
support this degree of rapid model development, a land model testbed (LMT) capability is needed for calibration 
and evaluation of process-level submodels at site, regional, and global scales. A well-designed LMT would provide 
infrastructure similar to that of today’s model farms for executing models (e.g., the JPL Model Farm described in 
Section 5.2.6 and the PEcAn framework described in Appendix E.4), but provide many more features for rigorous 
benchmarking at varying degrees of model complexity. There is a risk that model development adds parameters and 
complexity that do nothing to reduce model error and bias. This risk can be overcome by consistently testing simple 
models against data, and determining the information content provided by more complex parameterizations (Li et al., 
2014) facilitated by a LMT deployed on supercomputing computational resources.

One of the key findings of this report is the need to select a core set of AmeriFlux and FLUXNET sites spanning 
major biomes to serve as the “gold standard” targets of long-term testbeds for ILAMB. A LMT should contain the 
collection of all associated data and metadata (e.g., meteorological forcing, soil texture, land use history, and plant 
traits) necessary for conducting model simulations, and have encoded the series of independent benchmark datasets 
(e.g., net fluxes, biometrics, and experimental data) for diagnosis of model process representations. Efforts to improve 
the code modularity in ALM and CLM are positioning those models to be able to take advantage of a well-crafted 
LMT, which must have access to individual submodels and simple input/output mechanisms for exchange of data not 
typically saved in model history files. For example, residence times for all pools, allocation and turnover of foliage, 
microbial pool dynamics, respiration of all living pools, trait correlations, N (including biological fixation) and P 
dynamics are needed for a detailed analysis. This biogeochemical data can then be used to evaluate model dynamics 
across pools and timescales (Thomas et al., 2013). A LMT could be incorporated into existing automated nightly or 
weekly model testing to add scientific functionality testing to routine compile, runtime, and restart testing.

In an effort to consider how a LMT may be useful for supporting rapid development of the ACME Land Model 
(ALM), a table of evaluation variables and benchmark datasets was organized. Table 6.1 contains this sample list 
of variables and corresponding datasets designed to prioritize incorporation and synthesis of observational data for 
evaluating the ALM. For each dataset, the citation and data source are listed (when available), and a decision was 
made about whether the data would be useful as model input or for evaluation or both. Datasets presently available 
for use are listed as “Ready” and those requiring collection, processing, and synthesis are listed as “Synthesis”. As 
ILAMB is expanded, a database recording the provenance of data should be created and used to track the capabilities 
of the ILAMB package, and such a database could be part of the supporting infrastructure provided by a LMT.

KEY RECOMMENDATIONS
» Design and build a land model testbed (LMT) for execution, calibration, and evaluation of alternative 

model formulations and process representations to support rapid model development and testing.

» An initial LMT should be designed around a small number of AmeriFlux and FLUXNET “super sites”  
for which single point simulations can be executed and evaluated quickly in parallel.

» Eventually a LMT capability should be incorporated into routine model development testing.
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Table 6.1. Listed here are example datasets identified for benchmarking the ACME Land Model.

Data Set Reference Source
Input or 

Evaluation Ready or Synthesis

Soil Nutrients and Age

Hedley P database Yang and Post (2011) http://daac.ornl.gov/
cgi-bin/dsviewer.
pl?ds_id=1223

Input Ready

Global soil 
respiration database

Bond-Lamberty and 
Thomson (2010)

https://github.com/
bpbond/srdb

Evaluation Ready

Microbial P database Xu et al. (2013); 
Hartman et al (2013)

Evaluation Ready

Vertical soil P profile Input Synthesis

Radiocarbon 
database

He et al. (2016) Evaluation Ready

Soil nitrification, 
denitrification

Ojima et al. (2000) https://www.nrel.
colostate.edu/
projects/tragnet

Evaluation Ready

Soil N deposition and 
leaching

Suddick and 
Davidson (2012)

Evaluation Ready

Sorption-desorption 
for P by soil order

Agriculture literature Evaluation Synthesis

Vegetation Measurements

Leaf N and P Kattge et al. (2011) TRY database Evaluation Ready

Fine root N and P Yuan et al. (2011); 
Gordon and Jackson 
(2000)

Evaluation Ready

Carbon stocks (MgC/
ha) tree, root, CWD/
dead wood

Forest Carbon 
Database (CiFOR)

Evaluation Ready

Fire (burned area) GFED3 (annual 
mean, seasonal 
cycle, interannual 
variability)

Evaluation Ready

Wood harvest Hurtt (annual mean) Input Ready

Land cover MODIS PFT fraction Input Ready

Live biomass Global: Saatchi et al. 
(2011); Amazonia: 
Malhi et al. (2006)

Evaluation Ready

Vegetation Demography

Demographic data 
(DBH census, basal 
area, abundance, 
species name)

http://ctfs.arnarb.
harvard.edu/Public/
pdfs/Condit_1998_
Census 
PlotsmethodsBook.
pdf

ForestGEO Input and Evaluation Synthesis

Basal area by 
diameter class

http://ctfs.arnarb.
harvard.edu/Public/
pdfs/Condit_1998_
Census 
PlotsmethodsBook.
pdf

ForestGEO, LTER, 
BOREAS, INPA

Evaluation Synthesis
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Data Set Reference Source
Input or 

Evaluation Ready or Synthesis

Basal area by wood 
density class

http://ctfs.arnarb.
harvard.edu/Public/
pdfs/Condit_1998_
Census 
PlotsmethodsBook.
pdf

ForestGEO, LTER, 
BOREAS, INPA

Evaluation Synthesis

Basal area by leaf N 
content

http://ctfs.arnarb.
harvard.edu/Public/
pdfs/Condit_1998_
Census 
PlotsmethodsBook.
pdf

ForestGEO, LTER, 
BOREAS, INPA

Evaluation Synthesis

Seasonal LAI http://ctfs.arnarb.
harvard.edu/Public/
pdfs/Condit_1998_
Census 
PlotsmethodsBook.
pdf

ForestGEO, LTER, 
BOREAS, INPA

Evaluation Synthesis

Mean mortality 
rate (with modes of 
death captured in 
RAINFOR database)

http://ctfs.arnarb.
harvard.edu/Public/
pdfs/Condit_1998_
Census 
PlotsmethodsBook.
pdf

ForestGEO, LTER, 
RAINFOR

Evaluation Synthesis

Disturbance and 
mortality

Midrexler et al. 
(2009)

MODIS Global 
Disturbance Index 
(MGDI)

Input and Evaluation Synthesis

Hydrology

Soil moisture De Juer, SMAP Evaluation Synthesis

Water storage 
anomaly

GRACE Evaluation Ready

River flow/runoff Syed/Famiglietti, 
GRDC, Dai, GFDL, 
GSCD

Evaluation Ready

River temperature Evaluation Synthesis

Snow cover AVHRR, GlobSnow Evaluation Ready

Snow depth CMC (North America) Evaluation Ready

Snow water 
equivalent

North America: Ghan 
et al (2006)

National Operational 
Hydrologic Remote 
Sensing Center

Evaluation Ready

Surface Energy Budget

Surface skin 
temperature

MODIS LST, GOES LST Evaluation Ready

NLDAS-2 surface 
air temperature, 
downward SW and 
LW

CONUS: Cosgrove et 
al. (2003)

http://ldas.gsfc.nasa.
gov/index.php

Evaluation Ready

CRU surface air 
temperature

Harris et al. (20013) http://badc.nerc.
ac.uk/view/badc.
nerc.ac.uk__ATOM__
dataent_ 
1256223773328276

Evaluation Ready

Net radiation, LE, H Lasslop et al. (2010) Fluxnet Evaluation Ready

Albedo  MODIS, CERES Evaluation Ready

Radiative fluxes  CERES, SURFRAD, 
ARM

Evaluation Ready
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Data Set Reference Source
Input or 

Evaluation Ready or Synthesis

CERES surface 
SW, LW, and net 
radiation

Kato et al. (2013) http://ceres.larc.
nasa.gov/order_
data.php

Evaluation Ready

WRMC BSRC surface 
SW, LW, and net 
radiation

Konig-Langl et al. 
(203)

 Evaluation Ready

Carbon Fluxes

Gross primary 
production

Lasslop et al. (2010); 
Jung et al. (2010)

FLUXNET; MPI-BGC 
MTE product

Evaluation Ready

Net ecosystem 
exchange

Lasslop et al. (2010) FLUXNET Evaluation Ready

Litterfall, Litter Content, Litter Decomposition

Litterfall and litter 
carbon and nutrients

Holland et al. (2014)  Evaluation Ready

Litterfall http://www.ctfs.
si.edu/data///
documents/Litter_
Protocol_20100317.
pdf

ForestGEO Evaluation Synthesis

LIDET for N Parton et al. (2007) http://
andrewsforest.
oregonstate.edu/
research/intersite/
lidet.htm

Evaluation Ready

CIDET for N and P   Evaluation Ready

Tropical litter 
decomposition

Manzoni et al. (2010)  Evaluation Synthesis

Functional Responses

NPP vs. N availability Thomas et al. (2010)  Evaluation Ready

NPP vs. P availability Quesada et al. 
(2012); Aragão et al. 
(2009)

 Evaluation Ready

Aboveground 
biomass C vs. 
aboveground NPP

Keeling and Phillips 
(2007)

 Evaluation Ready

Manipulation Experiments

FACE synthesis for 
NPP

Zaehle et al. (2014)  Evaluation Ready

Ecosystem 
fertilization

LeBauer and 
Treseder (2008); 
Elser et al. (2007); 
Wright et al. (2014); 
Vitousek et al. (2004)

 Evaluation Ready

Decomposition McGroddy et al. 
(2004)

 Evaluation Ready

Soil incubation Cleveland and 
Townsend (2006)

 Evaluation Ready

Soil warming Rustad et al. (2000); 
Melillo et al. (2011, 
2002)

 Evaluation Ready

CO2 effect on 
phosphatase

  Evaluation Synthesis

EucFAC, Amazon 
FACE

  Evaluation Synthesis

Tropical warming    Evaluation Synthesis
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7.0 Traceability and Uncertainty  
 Quantification Frameworks
In order to understand and explore the uncertainty around predictions made by terrestrial models, it is crucial 
to improve methods and datasets to quantify the structural and parametric sources of this uncertainty. Two key 
developments are required to do this: (1) the development of reduced order models to simplify and systematize the 
relationships within full models, and (2) development of UQ approaches to understand parametric and structural 
uncertainty. One such reduced-order approach is the traceability framework of Luo and collaborators, which seeks 
to define a common matrix structure underpinning carbon cycle models, such that both structural and parametric 
uncertainty can be explored via the values of turnover times, carbon flows, and the correlation structure between 
these. Other UQ approaches include the identification of parametric uncertainty that most strongly affects model 
outcomes, so as to focus research efforts on defining these, as well as methods to calibrate model parameters and 
discriminate between alternate model structures.

7.1 Traceability Framework
To evaluate model fidelity and understand the sources of uncertainty that lie behind carbon cycle projections, the 
modeling community needs to develop better observational benchmarks of model performance, which has been 
the focus of ILAMB and related efforts. A key requirement for increased understanding is the ability to tie specific 
biases in model predictions to underlying process representations. One way to do so is through the development of 
diagnostic approaches that simplify and generalize model structures into component parts. A promising approach 
is to consider the carbon cycle at a given location as a cascade in which carbon enters the ecosystem only through 
leaf-level photosynthesis, and then is transferred from the leaves into the other tissues that comprise a plant, which 
ultimately grows, dies, and decays in the soil. This common framework allows one to generalize carbon cycle models 

KEY RECOMMENDATIONS
» Integrate and report model diagnostics that allow the emulation of carbon cycle models as a matrix 

of carbon flows and turnover times, in order to attribute uncertainty in carbon responses to specific 
ecosystem components.

» Apply Bayesian UQ approaches that efficiently utilize leadership-class computing facilities to quantitatively 
identify uncertainties in LSM output.

» Use UQ results to guide data collection activities and target critical model improvement activities, 
including new or revised process representations.

» Improve the fidelity of emulators and their use in UQ methods. 

» Emphasize the role of inverse modeling and data assimilation to update both model parameters 
and states as part of Bayesian UQ strategies, and as such, the importance of observational data with 
associated uncertainties.

» Standardize collection and distribution of observational data. Standardization implies a common data 
format as well as metadata such as measurement errors and procedures used to compute them. If the 
data have gaps which were filled in/imputed with a model, provide the model or, at a minimum, the 
uncertainty bars in the imputed data.

» Incorporate more trait, remote sensing, and other data to provide constraints on model parameter 
distributions and to enable evaluation of model constraints given existing data sources.

» Suggest a simple and clear web-based graphical user interface (GUI) that provides access to models, UQ, 
and ILAMB benchmarking tools to facilitate a broader adoption of the approaches and to allow non-
modelers but process/domain experts to conduct UQ and data assimilation experiments.

» Leverage several UQ frameworks that have important and complementary tools. Use an improved 
cyberinfrastructure to link these tools within a broader community-wide model UQ and data integration 
framework focused on improved land surface model (LSM)/terrestrial biosphere model (TBM) projections.



32

2016 ILAMB WORKSHOP REPORT

into a common structure, which can be well represented by the matrix equation (Luo et al., 2003; Luo and Weng, 
2011; Luo et al., 2015, 2016; Sierra et al., 2015) as:

 X ’(t) = B u(t) – A ξ(t) K X(t),        (1)

where X ’(t) is a vector of net carbon (C) pool changes at time t, X(t) is a vector of pool sizes, B is a vector of 
partitioning coefficients from C input to each of the eight pools, u(t) is C input rate, A is a matrix of transfer 
coefficients to quantify C transfer along the pathways, K is a diagonal matrix of exit rates (mortality for plant 
pools and decomposition coefficients of litter and soil pools) from donor pools, and ξ(t) is a diagonal matrix of 
environmental scalars to represent responses of C cycle to changes in temperature, moisture, litter quality, nutrients, 
and soil texture. The equation describes net C pool change, as a result of C input, distributed to different plant pools 
via partitioning coefficients, minus C loss through transfer of C, in individual pools.

Overall, this equation can conceptually express all of the soil C transformation processes and summarize structures 
of classic SOC models, such as the CENTURY (Parton et al., 1987, 1988, 1993) and RothC models (Jenkinson et 
al., 1987), and—despite the fact the various ESMs may differ in many parameters and processes that determine the 
terms in this equation—embedded in ESMs (Ciais et al., 2013). Thousands of datasets published in the literature 
from litter decomposition and soil incubation studies have been used to obtain first-order decay parameters that can 
be used in ESMs (Zhang et al., 2008; Schädel et al., 2013, 2014). The scalar function, ξ(t), in Equation 1 represents 
the environmental modifier for decomposition and transfer rates with respect to changes in temperature, moisture, 
litter quality, and soil texture. Empirical studies have also indicated that temperature, moisture, litter quality, and soil 
texture are primary factors that control soil C decomposition and stabilization (Burke et al., 1989; Adair et al., 2008; 
Zhang et al., 2008; Xu et al., 2012).

Equation 1 not only summarizes most of the land carbon cycle models embedded in most of the Earth system models 
(ESMs) but also contains several mutually independent components. Traceability analysis decomposes the complex 
terrestrial C cycle into a few traceable components (Xia et al., 2013, 2015a). Traceability analysis helps identify 
sources of uncertainty in modeled steady-state ecosystem carbon storage due to (1) C input as affected by phenology, 
physiology, and C use efficiency (Xia et al., 2015a); (2) edaphic and vegetation characteristics as related to baseline 
C residence time; (3) climate scalars; and (4) environmental variables among models (Figure 7.1). The traceability 
framework has been applied to assess influences of external variables being represented as parameters, boundary 
conditions, and diagnostic variables in models so as to disentangle complex representations of external variables in 
influencing simulated C dynamics in ESMs (Xia et al., 2013).

As an example of how the traceability approach may lead to greater understanding of model behavior, Rafique et 
al. (2016) applied the traceability framework to two global land models (CABLE and CLM-CASA’) to diagnose 
causes of their differences in simulating ecosystem carbon storage capacity. Driven with similar forcing data, the 

Figure 7.1. Schematic diagram 
of the traceability framework. 
The framework traces modeled 
ecosystem C storage capacity 
(Xss) to a product of net primary 
productivity (NPP) and ecosystem 
residence time (τE). The latter 
τE can be further traced to (i) 
baseline C residence times (τ´E), 
which are usually present in a 
model according to vegetation 
characteristics and soil types, 
(ii) environmental scalars (ξ), 
including temperature and water 
scalars, and (iii) environmental 
forcing. NPP can be traced to  
C use efficiency (CUE), C uptake 
period and the seasonal maximum 
of gross primary productivity 
(GPP). Adopted from Xia et al. 
(2013, 2015).
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CLM-CASA’ model predicts ~31% larger carbon storage capacity than the CABLE model. Since ecosystem carbon 
storage capacity is a product of net primary productivity (NPP) and ecosystem residence time (τE), the predicted 
difference in the storage capacity between the two models results from differences in either NPP or τE or both. This 
analysis showed that CLM-CASA’ simulates 37% higher NPP than CABLE does because of the parameter setting 
that gives CLM-CASA’ higher rates of carboxylation (Vcmax) than CABLE. On the other hand, ecosystem residence 
time (τE) was longer in CABLE than CLM-CASA’. Because τE is determined by baseline carbon residence time (τ É) 
and environmental scalars, the difference in τE is caused by both longer τ É and stronger temperature limitation of soil 
carbon decomposition (i.e., smaller temperature scalar) in CABLE than CLM-CASA’. The longer τ É in CABLE was 
mainly determined by its longer τ É of woody biomass and higher proportion of NPP allocated to woody biomass 
than CLM-CASA’. Comparatively, environmental scalars have relatively smaller influences than NPP and τ É in 
causing differences in predicted carbon storage capacity between the two models. Overall, the traceability framework 
offers an effective approach to identify sources of uncertainty among models.

One key issue going forward is that a variety of current and emerging model structures have fundamentally nonlinear 
dynamics, which may be less conducive to the approach of constructing linear emulators. In particular, both the 
vegetation components, through the development of cohort-based models (e.g., Moorcroft et al., 2001; Weng et al., 
2015), and the soil components, through the development of microbial models (e.g., Wieder et al., 2015c; Sulman et 
al., 2014) have fundamentally different dynamics because the turnover times become an emergent, nonlinear property 
that must be diagnosed rather than one that can be calculated from the model. The applicability of the traceability 
method on this class of models remains a key unresolved question to be explored.

Model intercomparison projects (MIPs) all illustrate great spreads in projected land C sink dynamics across models 
(Todd-Brown et al., 2013; Tian et al., 2015). It has been extremely challenging to attribute the uncertainty to sources. 
For example, the CMIP5 protocol did not allow the calculation of all terms required to perform this traceability 
analysis. Nonetheless, using the available output does allow a first-order separation of the dominant terms of 
productivity and turnover, which shows an interesting pattern: inter-model spread in the initial carbon stocks was 
primarily driven by differences in turnover times, whereas inter-model spread in transient changes was mostly due 
to changes in productivity (Koven et al., 2015). Placing simulation results of a variety of C cycle models within 
one common parameter space can measure how much the model differences are in common metrics. The measured 
differences can be further attributed to sources in model structure, parameter, and forcing fields with traceability 
analysis (Xia et al., 2013; Rafique et al., 2016; Ahlström et al., 2015; Chen et al., 2016). The traceability analysis also 
can be used to evaluate the effectiveness of newly incorporated modules into existing models, such as adding the  
N module on simulated C dynamics (Xia et al., 2013).

It will be fruitful to explore how new techniques stemming from the global analysis, such as physical emulators (i.e., 
matrix expression of global carbon cycle models) and traceability, can enhance benchmark analysis. Furthermore, 
such emulators may be of use in uncertainty quantification efforts, as the reduced order form of the traceability 
framework may allow for both computationally-efficient process-based emulators that can be run over large numbers 
of ensembles, as well as efficient ways of finding steady-state initial conditions to full models when varying parameters 
for UQ methods.

7.2 Scientific Driver for UQ of LSM
Quantifying the uncertainty in model outputs due to parameters, initial conditions, or model drivers is crucial to 
robust benchmarking efforts. In particular, inverse modeling and uncertainty propagation are two areas of UQ  
that should be integrated into the ILAMB framework. LSMs typically contain many parameters and drivers that  
must first be constrained to obtain meaningful benchmark results. Parameter tuning, part of a larger framework of 
model–data integration, uses observational data and expert knowledge to identify appropriate model parameters.  
The use of Bayesian approaches to inverse modeling or calibration (otherwise known as parameter data assimilation, 
PDA) will further allow determine statistical descriptions of model parameters and potentially reduce parametric 
uncertainty bounds. Using the improved quantitative description of the parametric uncertainties within an 
uncertainty propagation analysis then produces meaningful statistical descriptions of the benchmarked metrics  
for a particular LSM. In particular, it is possible to quantify the robustness of a particular LSM in the presence  
of model uncertainties. 
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Moreover, model–data integration activities also include state-variable data assimilation (SDA). In contrast to model 
calibration or PDA, SDA focuses on updating model states by comparing a model forecast to an observation of that 
state which serves to move the model closer to the observation weighted by the uncertainties in both the model and 
data. Following the SDA step, the best estimate of the state of the system is used as the prior for the next model 
forecast, and the uncertainty in the model projection is reduced based on the confidence in the data and model 
projection. SDA is particularly useful for capturing processes and perturbations that may not be explicitly captured 
by a model (e.g., windthrow) and serves to move the model toward the observation, which in turn updates associated 
model states to better reflect the observed state. SDA together with PDA can be used to test model predictive capacity 
and evaluate alternative model process representations.

Advanced UQ tools are also important in other aspects of benchmarking, including sensitivity analysis and model 
diagnostics, especially when the number of model parameters is increasing in tandem with model complexity. Model 
UQ and variance decomposition can be used to guide data collection and model improvement activities based on 
the decomposed variance of a particular model forecast. By ordering the dominant drivers of model uncertainty in 
projections of carbon, water, and energy fluxes and storage model UQ and variance decomposition approaches help to 
focus on the high-priority model needs first. In addition, UQ activities within ILAMB should be conducted regularly 
and iteratively to identify model improvements based on previous UQ results and re-prioritize critical new foci based 
on the latest updated results. For example, UQ can help identify a critical observational need which then reduces the 
uncertainty of the model. The next UQ cycle would then identify a new area of focus, given that the previous priority 
is now sufficiently constrained. Finally, it is critical that UQ tools provide both univariate and multivariate approaches 
to evaluate the covariance among model parameters and drivers.

Applications of UQ techniques are typically constrained by the computational cost of an LSM. At present, advanced 
UQ techniques, such as Monte Carlo (MC) based methods, can only be used with site-specific models that are 
computationally inexpensive. At regional and global scales, only scenario-based UQ analyses are computationally 
tractable. Scenarios are, however, too sparse to draw rigorous conclusions and support decisions with quantified risk/
uncertainty bounds. Efficient linear approximation techniques (e.g., maximum likelihood estimation with Gaussian 
assumption) are often not very useful because LSM responses of perturbed-parameter studies are strongly nonlinear. 
With the availability of spatially-distributed observational data (e.g., global remote sensing data, Appendix C.6) there 
is an increasing need to apply advanced UQ techniques at the regional and global scales that can also leverage diverse 
datasets. This requires new approaches that can approximate the full results using dimensionality reduction, which 
could be based on climate, vegetation, topographic, or other clustering approaches.

In addition, there have emerged many recent advances in Markov Chain Monte Carlo (MCMC) methods and 
particle-based MC methods that we can explore and customize to LSMs. Some new efficient methods include 
implicit particle filter (Chorin and Tu, 2009); stochastic Newton MCMC method (Martin et al., 2012); and MCMC 
methods that utilize Gibbs samplers (Kuczera et al., 2010), differential evolution samplers (Laloy and Vrugt, 2012), 
affine invariant ensemble samplers (Goodman and Weare, 2010), and surrogate-based samplers (Goodwin, 2015; Ray 
et al., 2015). These methods have varying degrees of parallelism that affect their efficient deployments on leadership-
class supercomputing facilities. It is unlikely that one method will be suitable under all benchmarking scenarios and 
for all LSMs. There is thus a need to identify how the various methods can be applied efficiently under the different 
benchmarking scenarios that will be encountered in regional ILAMB UQ activities.

The number of parameters in an LSM can be large, and this poses another UQ challenge. However, chosen 
benchmarking metrics are usually impacted only by a small subset of the parameters and drivers that are used within 
LSMs. Dimensionality reduction can be achieved by identifying a reduced set of salient or relevant contributors 
through a sensitivity analysis (SA). Global SA requires large perturbed-parameter ensembles (especially for high-
dimensional global SA), and the challenge lies in computational resources, data bookkeeping, provenance, and 
a cyberinfrastructure capable of managing the distributed resources. This can be partly addressed by using sparse 
grid methods; e.g., Smolyak grids and Curtis-Clenshaw quadratures. However, their use is not widespread in the 
LSM community.

Emulators or surrogate models are fast-running proxies of LSMs that can be used in studies where LSMs need to 
be invoked repeatedly (e.g., parameter or data assimilation). Emulators are typically constructed through statistical 
methods (e.g., Gaussian process regression, and polynomial chaos expansion), machine learning approaches (e.g. 
random forests, support vector machine regression, deep neural networks, and gradient boosting machines), and 
model reduction techniques (proper orthogonal decomposition method, reduced basis method, and discrete empirical 
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interpolation method). The use of emulators (typically generated through large ensemble simulations of the full LSM) 
can help to reduce overall computational costs of large-scale UQ and benchmarking, in particular for regional-scale 
LSMs. However, emulators must first be trained using outputs from large ensemble simulations of the full LSM. The 
number of simulations required is typically reduced by utilizing efficient space-filling sampling techniques (e.g., Latin 
hypercubes, and sparse collocation method) or constraining the parameter space through a global SA or dimensional 
reduction algorithms. While the use of emulators in UQ analysis is promising, there are several challenges that must 
first be addressed. First, LSM responses may be too complex to allow accurate emulators to be built. While there 
are many successful attempts at constructing emulators for scalar responses, methods for field responses (as one 
might expect in regional LSM runs) are not well studied. Second, approximation errors inherent in emulators need 
to be accounted for in the UQ methods. Alternatively, we can attempt to identify an optimal pairing of emulator 
and MC method that will achieve the desired improvement in accuracy and efficiency. For example, the implicit 
particle filter efficiently constrains the effective parameter space, allowing accurate emulators to be efficiently built 
with fewer samples. Finally, streamlined construction of emulators is a necessity for practical UQ and large-scale data 
assimilation, which are hampered by the complexity of LSM structures and responses.

7.3 Observational Data Needs 
As a community we have entered into a data-rich era with numerous observational datasets collected at site to regional 
and global scales (Luo et al., 2011). These include leaf-level datasets, inventory data, tower observations, and remote 
sensing. However, in many cases these data are not easily available, well documented, web-accessible, standardized, 
provided with error estimates, or stored in an archival format. Many key datasets are “long tail” data found in student 
theses, hard copy, researcher hard drives, or other sources that are challenging to bring forward to the benchmarking 
and modeling community. New technologies and open-science initiatives are quickly eliminating these access 
problems with contemporary data, but a general investment in improved data retrieval and standardization is needed 
regardless of the observation of interest. In particular, proper documentation of datasets is critical for the appropriate 
use of any observation and to avoid erroneous benchmarking or comparisons. Moreover, data standardization is 
critical, and knowledge of data collection, instrumentation, post-processing, etc., is necessary to provide comparable 
data from multiple sources with uncertainties. Web-accessible tools should be prioritized to foster transparency such 
that the larger community can utilize and evaluate these synthetic observations, which serve to iteratively improve 
the datasets and curate standard products used across research groups, thereby serving to enhance reproducibility and 
direct comparisons across scales.

The following is a list of specific data requirements for maximizing the use of observations in model uncertainty 
quantification efforts:

» Collaborating with DOE’s SPRUCE project to collect data and synthesize benchmark datasets for diagnosis of 
model responses to prescribed perturbations for a northern peatland

» Include estimates of measurement errors in any data that is distributed. This should also mention distribution of 
the errors.

» Access to scripts/codes for gap-filling, or generate gap-filled data and documentation of the gap-filling algorithm.

» Metadata: how it was collected (instrument), how the measurement error estimates were computed (assumptions, 
etc.), what missing data has been filled in, and how that was done, etc.

» Include data and associated metadata in the same file/package.

» Standardized, documented, and web-accessible meteorology driver data available at multiple temporal resolutions 
able to drive the models within ILAMB

» Web-accessible orbital and suborbital remote sensing datasets useful for model evaluation, calibration, and 
benchmarking, including LiDAR, microwave, hyperspectral, and thermal (Appendix C.6; Schmid et al., 
2015). This includes new fusion products designed to test model outputs and functional responses within a 
UQ framework

» “Sensor simulator” to provide direct comparison between internal model structure and canopy radiative transfer 
and low-level observations from suborbital and orbital remote sensing platforms. By comparing direct observations 
(i.e., surface reflectance) as well as derived products (e.g., LAI), the uncertainty in model structure can be 
evaluated and can as well as facilitate direct data assimilation to improve model fidelity.
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7.4 Algorithm Needs
The main algorithms needed can be classified into five categories: sensitivity analysis algorithms, inverse modeling 
algorithms, data assimilation algorithms, Monte Carlo-based algorithms, and training algorithms for emulators. There 
are potential overlaps in these categories. Existing packages for these algorithms exist in R (e.g., abc), Python (e.g., 
Sciki-Learn [https://www.scikitlearn.org/stable/], pyMC), MATLAB (e.g., UQLab [https://www.uqlab.com/]), 
and C++ (e.g., DAKOTA, UQTK).

Most of the scripting languages contain packages that implement different deterministic and Bayesian calibration 
methods. Bayesian calibration develops estimates of LSM parameters as probability density functions (PDF); they 
are usually much narrower than the bounds that constitute prior beliefs regarding their values. Many new Bayesian 
methods are implemented in R and Python. When Gaussian assumptions regarding the PDF are acceptable, 
scalable ensemble Kalman filters (e.g., OpenDA [https://www.openda.org/]) are routinely used. However, if 
distributional assumptions are not to be imposed, Markov chain Monte Carlo (MCMC) and particle filters (PF) are 
required to solve the calibration problem. New MCMC-based algorithms are available in Python, for example the 
Differential Evolutionary Monte Carlo method (in spotpy), and the affine invariant Monte Carlo method (in emcee). 
Approximate methods for Bayesian calibration (e.g., Approximate Bayesian Computation [Csilléry et al., 2010]) that 
could employ LSMs (not emulators) are available in R (Csilléry et al., 2012). Bayesian calibration of LSMs is still in 
its infancy; the thrust seems to be in assessing whether parameter-estimates-as-PDFs confer much benefit in terms of 
predictive skill.

Approaches for constructing emulators through statistical, regression and machine learning techniques exist mostly in 
R and Python (e.g., Scikit-Learn). DAKOTA (https://dakota.sandia.gov/) and UQTK (https://www.sandia.gov/
UQToolkit); however, Karhunen-Loeve (KL) approximations of multivariate Gaussian random fields are potentially 
suitable for field-scale emulation, although it is unclear how the large eigensolves required for KL decompositions 
of regional LSM runs can be efficiently performed by serial UQ software. Random field models for non-stationary 
random fields (e.g., wavelet based) are not supported by any UQ package. Despite the availability of multiple, well-
implemented packages, there is currently no framework that allows streamlined construction of emulators that take 
into account the complexity of LSM structures and responses. To make advances in the application of UQ techniques 
for LSM, the following priorities should be pursued:

» Access to scalable packages for EnKF, MCMC, approximate Bayesian computation

» Automatic packages for constructing surrogate models based on Gaussian process, neural nets, deep learning, 
random forests, support vector machine regression, and non-parametric methods

» New parsimonious parameterizations for spatially variable fields; e.g., flux, permeability, and sparsity-enforcing 
inference methods such as Bayesian compressive sensing

» A connected cyberinfrastructure to link multiple existing tools, frameworks, and approaches within ILAMB to 
provide synthetic workflows that provide advanced UQ and assimilation algorithms and approaches

7.5 Computational, Visualization, and Data  
 Analysis Needs
Perturbed parameter ensembles result in large datasets, and UQ is assisted substantially by a combination of physical 
intuition (i.e., expert knowledge) and data patterns observed in the ensembles. Exploratory data analyses of the 
ensembles is a necessity for efficient UQ analyses, but existing visualizations tools for large data (e.g., Ensight, 
Paraview) are geared toward interrogation of individual datasets, not ensembles. Large data analysis tools such as 
Spark [Spark] can script/automate much of the preliminary data processing required in exploratory data analysis 
but lack any visualization capabilities. A scripting and visualization capability such as R, Python, or Matlab, but 
customized to ensemble analysis, would be helpful. The following objectives should be considered to overcome 
computational and visualization challenges:

» Parallelization of LSMs: task-based parallelization of LSM, distributing each site or ensemble member on each 
core of a graphics processing unit (GPU) to speed calculations 
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» Data analysis and visualization: possibility to combine big-data analysis software (e.g., Spark) with visualization 
capabilities (e.g., like the statistical scripting language R) to enable detailed diagnostic figures. In addition, 
packages such as R-Shiny provide interactive data wrangling and plotting for big data. Possibility of having Big 
Data analytics clusters to be co-located with HPC platforms?

» Web-accessible GUI to run models and model UQ tools within ILAMB. This will facilitate more direct 
connection between modeler, measurers, and domain experts.

» Leverage existing tools for interactive data analysis (e.g., R-Shiny) to improve interaction and real-time analysis 
of model benchmarking results. Provide web-accessible tools for analysis and visualization capable of generating 
publication-ready graphics
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8.0 Computational Needs  
 and Requirements
Comprehensive analysis of ESM output at increasing resolutions is already challenging the computational 
infrastructure commonly used by modelers and analysts. As observational data sets continue to grow in temporal 
length and spatial resolution, data storage and processing capacities will limit their use in model benchmarking 
without appropriate investments in data management and computational infrastructure. Scalable algorithms and 
machine learning techniques should be developed for evaluating and benchmarking high resolution and long time 
series ESM results.

Combining integrating, and synthesizing data across Earth science disciplines offers new opportunities for scientific 
discovery that are only starting to be realized (Hoffman et al., 2011). The rise of data-intensive scientific pursuits, 
in Earth sciences and other disciplines, has led some visionaries to proclaim it the fourth paradigm of discovery 
alongside the traditional experimental, theoretical, and computational archetypes (Hey et al., 2009). The promise 
of scientific advances in predictive understanding of environmental change has stimulated an enormous increase in 
the volume of both model and observational data. ESM simulations, especially for community modeling activities 
like CMIP, can generate tens of terabytes to several petabytes of output in raw form (Overpeck et al., 2011). Satellite 
remote sensing data tend to be very large and their size has grown as spatial and temporal resolutions have increased; 
however, small ecological data sets, often the most useful for synthesis, may be the most difficult to preserve, 
distribute, and use (Reichman et al., 2011). Research organizations must address these data collection, curation, 
archiving, discovery, and distribution challenges, and plans for creating a Virtual Laboratory infrastructure promise 
solutions that could enable new knowledge discovery (Williams et al., 2016).

Today’s large and complex Earth science data often cannot be synthesized and analyzed using traditional methods 
or on individual workstations. As a result, data mining, machine learning, and high performance visualization 
approaches are increasingly filling this void and can often be deployed only on parallel clusters or supercomputers 
(Hoffman et al., 2011). However, supercomputer architectures designed for compute-intensive simulations, usually 
containing large numbers of cores with high speed interconnects between nodes, are not typically optimal for large 
scale analytics. Instead, such applications demand large and fast on-node memory, high bandwidth input/output 
(I/O), and fast access to large local disk volumes. To realize the promise of new scientific discovery from very large, 
long time series Earth science data, a distinct balance of increasing computational, storage, and bandwidth capacity 
from high performance computing resources is required. Scientific computing enterprises should be advised to 
strike the right balance of these resources for their application communities as they plan their expansion to exascale 
computing (Lucas et al., 2014).

As described above, UQ presents significant computational challenges that lead to development of reduced 
complexity and surrogate models that may fail to reproduce model behavior in unpredictable ways. Methods that 
can exploit leadership-class computing should be developed to address these challenges. Facilities supporting large 
scale data management and server-side manipulation and computation (e.g., Google Earth Engine) will become 
increasingly important as growing data volumes eliminate the possibility of transporting data to a researcher’s site for 
analysis. Data assimilation, in situ visualization, and benchmarking should function independent of the locations of 

KEY RECOMMENDATIONS
» Scalable algorithms and machine learning techniques should be developed for evaluating and benchmarking high 

resolution and long time series ESM results.

» Research organizations should develop cyber infrastructure to support large scale data collection, curation, archival, 
discovery, and distribution, and it should support automated model–data comparisons and online data assimilation 
for parameter estimation through supercomputing facilities.

» Scientific computing facilities should strike a balance between resources for compute-intensive vs. data-intensive 
applications as they plan their expansion to exascale computing.

» New development for ILAMB should include improved support for remote retrieval and version tracking for 
observational data.
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the data streams or observational data products needed to drive the simulation or evaluate its results. Realizing this 
vision requires investment in both cyber infrastructure for simulations and data storage and retrieval (e.g., obs4MIPs) 
and the software components of models and benchmarking packages. New development for ILAMB should include 
improved support for remote retrieval and version tracking for observational data.
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9.0 Conclusions and Next Steps

9.1 Workshop Conclusions
The May 2016 ILAMB Workshop was very successful in bringing the international community together to identify 
scientific challenges and priorities for future research. The workshop demonstrated that there is a vibrant community 
of scientists, spanning many disciplines, who are committed to reducing barriers for information flow between the 
measurement and modeling communities. The integration of ILAMB packages into the workflow of several major 
modeling centers highlights the growing importance of this effort for the science of Earth system prediction.

A variety of Benchmarking Approaches have been adopted to evaluate model accuracy through comparison with 
observations, including the following:

 › Statistical comparisons (bias, root-mean-square error (RMSE), phase, amplitude, spatial distribution, Taylor 
diagrams and scores)

 › Functional relationship metrics or variable-to-variable comparisons

 › Emergent constraints

 › Reduced complexity models and traceability analyses

 › Formal uncertainty quantification (UQ) methods

 › Meta-analyses of perturbation and sensitivity experiments.

While many of these statistical measures are not independent, each provides slightly different information about 
contemporary model performance with respect to observational data and about implications for future projections 
from ESMs. Reduced complexity models, traceability analysis, and UQ methods could be combined into useful 
frameworks to achieve the following goals:

 › Integrate and report carbon cycle model diagnostics as a matrix of flows and turnover times to attribute responses 
to specific ecosystem components

 › Apply Bayesian UQ approaches that utilize leadership-class computing facilities to quantify model uncertainties

 › Employ UQ results to guide data collection activities and target process representations needing improvement

 › Investigate integration of emerging UQ frameworks with future ILAMB package releases.

 › Developing metrics that make appropriate use of observational data remains a scientific challenge because of 
the following:

 › Spatial and temporal mismatch between models and measurements

 › Poorly characterized uncertainties in observational data products

 › Biases in reanalysis and forcing data

ADVANCING BENCHMARKING SCIENCE
 » A combination of small, targeted working groups, and larger, but less frequent meetings with the full community 

can increase visibility, participation, and science impact of ILAMB over the next several years.

 » Supporting the 6th Phase of the Coupled Model Intercomparison Project (CMIP6) is one of the most critical ILAMB 
goals for the next 3–4 years.

 » In the next 10 years, the community needs a synthesis center that will lower the barrier to information flow 
between measurement and modeling communities, with ILAMB serving as a core capability.
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 › Model simplifications

 › Structural and parametric uncertainties.

In the near-term, an important step will be to target specific areas within the fields of ecosystem ecology and 
hydrology for synthesis and further detailed ILAMB metrics development. Recommendations identified for next-
generation Benchmarking Challenges and Priorities included the following:

 › Develop supersite benchmarks integrated with AmeriFlux and FLUXNET

 › Create benchmarks for soil carbon turnover and vertical distribution and transport

 › Develop benchmark metrics for extreme event statistics and responses of ecosystems

 › Synthesize data for vegetation recruitment, growth, mortality, and canopy structure

 › Create benchmarks focused on critical high latitude and tropical forest ecosystems

 › Leverage observational projects and create a roadmap for remote sensing methods.

Small, targeted working groups should be formed to research and publish analyses supporting these priorities. Other 
priority areas that the community identified as important included photosynthesis, aboveground biomass and litter, 
permafrost processes, atmospheric radiation measurements, the three-dimensional structure of atmospheric CO2, and 
the use of radiocarbon as a constraint on soil processes.

Specific Enabling Capabilities identified as required to address the next generation Benchmarking Challenges and 
Priorities included the following:

 › Model development of new process representations and new output variables

 › Deployment of land model testbeds (LMTs)

 › Directed field measurements and monitoring activities

 › Perturbation experiments and laboratory studies

 › Standardize collection, processing, archiving, and distribution of observational data in Federated data centers

 › Advanced computational resources and infrastructure.

New model development and verification activities could be more rapidly advanced through frequent and systematic 
simulation and testing. In particular, priority capabilities identified included the following:

 › LMTs for automated execution, calibration, and evaluation of alternative or competing model formulations

 › In situ diagnostics to summarize simulation results and avoid output of large data sets, which can greatly reduce 
computational efficiency

 › Initial LMT development that implements AmeriFlux and FLUXNET supersite evaluation of single-point 
offline simulations

 › LMT capabilities incorporated into existing routine model testing (e.g., nightly or weekly automated 
integration testing).

Computational needs and requirements identified for model development, testing, and advanced benchmarking 
included the following:

 › Scalable algorithms and machine learning techniques for evaluating and benchmarking high resolution and long 
time series ESM results

 › Cyber infrastructure to support large scale data collection, curation, archiving, and distribution, supporting 
automated model–data comparisons and online data assimilation for parameter estimation through 
supercomputing facilities
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 › A balance between resources for compute-intensive vs. data-intensive application as scientific computing facilities 
plan their expansion to exascale computing

 › New development for ILAMB that includes improved support for remote retrieval and version tracking for 
observation data through repositories like obs4MIPs.

Additional field measurements and monitoring activities, as well as perturbation experiments and lab studies, could 
provide valuable observational data for constraining models. High priority measurement needs identified for 
developing benchmarks and improving ESMs included the following:

 › Long-term energy, carbon, and water flux measurements at AmeriFlux and FLUXNET sites with standardized 
instrumentation and methods, and additional frequent or continuous ancillary in situ measurements of soil 
moisture, sap flow, tree height and diameter, litterfall, and soil nutrients

 › High latitude and tundra soil core measurements of carbon and nutrient distributions, including isotopes and 
soil ice/water content, and observations of vegetation growth and expansion of woody vegetation

 › Characterization of tropical ecosystem traits and canopy structure and chemistry; observations of tropical 
ecosystem responses to drought, increased temperatures, and elevated atmospheric CO2; and measurements of 
nutrient cycling and hydrology in tropical forests, focusing on strong land–atmosphere interactions

 › Remote sensing algorithms and processing infrastructure for generating data products useful for large-scale 
ecosystem characterization and monitoring, scaling up in situ measurements, and informing future measurement 
site selection.

9.2 Long-term Vision for Model Benchmarking
A productive approach for achieving breakthroughs in the areas described above would be to organize small 
working groups that bring together key individuals at the cutting edge of the target discipline along with ILAMB 
developers. Priorities for these synthesis activities are identified in Section 4. Over the course of several meetings, 
the teams would have a goal of creating new metrics. The teams also would use the ILAMB system to create figures 
and tables highlighting these metrics for a synthesis paper, for which all the contributing participants would share 
in co-authorship. The community also expressed enthusiasm in bringing the full community together for larger 
meetings, and there was consensus that this would be complementary to the smaller targeted working groups, 
especially if the larger meetings were organized on a 3–5 year cycle.

On a 3-year horizon (FY 2017–2020), the 6th phase of the Coupled Model Intercomparison Project (CMIP6) will 
be nearly complete, generating a vast archive of model simulation output from its suite of core DECK simulations 
and numerous associated MIPs (Section 5). The combined CMIP6 collection will provide information essential for 
governments around the world to limit the magnitude and impact of climate change. In this context, supporting 
CMIP6 must be a central ILAMB goal over the next three years, and it is expected to generate many unique 
challenges. For example, C4MIP, LS3MIP, and LUMIP, as described in Section 5, all have unique objectives, 
simulation characteristics, and variable requests. Participants in these MIPs are interested in the ability of models to 
predict land surface changes on vastly different time scales and across a widely varying set of processes.

To successfully support these MIPs, further development and a unique tailoring of the ILAMB system for individual 
MIPs may be necessary. Within each MIP, ILAMB may help to identify robust responses that occur across multiple 
models as well as persistent biases. Using the DECK simulations and other closely related simulations, ILAMB also may 
be helpful in documenting improvements in the representation of the land surface and atmospheric processes over time, 
from CMIP5 to CMIP6. This information will be of broad interest to Earth system scientists, policy makers, funding 
agencies, and the general public. Another important goal will be to use the emergent constraints that are currently 
being integrated within the ILAMB system to constrain future predictions of carbon dioxide and other biogeochemical 
variables. In doing so, ILAMB participants may be able to enhance the value of CMIP6 for the Intergovernmental Panel 
on Climate Change 6th Assessment Report, and other international and national synthesis efforts. 
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Another necessary step is to create a closer coupling between obs4MIPs (Teixeira et al., 2014; Ferraro et al., 2015) and 
ILAMB. This can be achieved by integrating ILAMB datasets into the obs4MIPs online repository and converting 
existing ILAMB datasets to follow well-established netCDF Climate and Forecast (CF) conventions (Eaton et al., 
2011). Whereas obs4MIPs currently includes many datasets valuable for constraining the physical climate system, 
many ecosystem variables have not yet been integrated into this system. This step will make it easier for ILAMB 
developers to build new modules, and it will increase the transparency and traceability of the system as it evolves.

Over a 5–10 year time horizon, the ILAMB system could serve as a core capability within a US or international 
center dedicated to increasing information flow between international measurement and Earth system modeling 
communities. Other important capabilities, complementing ILAMB, would include the ability of the center to solicit 
small synthesis proposals from the community for new working groups, host MIP-related activities, and support 
expanded Earth system model use and access by a broader cross section of scientists within disciplines of ecosystem 
ecology, biogeochemistry, and hydrology.
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Appendix A. Benchmarking Tools
A.1 PALS/PLUMBER 
 Gab Abramowitz and Martin Best
The Protocol for the Analysis for Land Surface models (PALS; Abramowitz, 2012) is an online web application for 
the automated evaluation and benchmarking of land surface model (LSM) simulations. PALS hosts a collection of 
“experiments,” each of which contains a collection of data sets required to force (if running offline) and evaluate a 
LSM at the particular spatial resolution or location prescribed by the experiment. Users create model profiles within 
the PALS system, and then upload their LSM simulation and associate it with one of their model profiles and the 
appropriate experiment. Once uploaded, the analysis script associated with the experiment automatically analyzes the 
uploaded model output, comparing it to evaluation data sets and/or model outputs from other users that are already 
associated with the experiment. Results of the analysis are available to all users with access to the experiment.

There are several motivations for creating this type of system. Running model intercomparison projects (MIPs) in this 
environment means the following:

» Analyses are transparent to all involved because analysis scripts are downloadable and editable. Standardization of 
evaluation can therefore be a community-based effort.

» Contributions to MIPs can be ongoing, without additional analysis effort.

» Additional analyses can be performed by anyone with access to the experiment.

» The entire history of MIPs on the PALS system remain “live” and available.

» A version history of data sets, analysis scripts, and experiment metadata are accessible to all experiment users.

» Ancillary data associated with models and model outputs can potentially be data-mined as part of the analysis.

» Ancillary data associated with models and model outputs improves provenance information and reproducibility.

This makes achieving the broader goals of a MIP, such as understanding why some models perform better than others, 
or whether or not models share particular weaknesses, more attainable.

Another obvious use of such a system is for model development. PALS’ implementation of “workspaces” to limit 
access to experiments to a subset of users means that development teams can use this type of system for fast, repeated 
analysis of model developments to share online with co-developers, as follows:

» The automated nature of analysis allows continuous integration testing for scientific model development through 
application programming interface (API) access (e.g., using Jenkins).

» Equity: access to the evaluation system is not contingent upon the ability to successfully install an analysis package 
or local computing resources. This increases the potential for international standardization of model evaluation 
and avoids duplication of analysis infrastructure.

» As noted above, ancillary data associated with model versions and model outputs improves provenance 
information and reproducibility and opens up the potential to data-mine ancillary data.

» The ability to nominate benchmarks for each analysis—other model outputs already associated with a particular 
experiment—makes comparing against different model versions easier.

Success of this type of system is clearly dependent upon the adoption of model input/output standards. PALS 
currently supports the Assistance for Land-surface Modeling Activities (ALMA) NetCDF standard to which many 
land surface modeling groups adhere. Work is underway to ensure full Climate and Forecast convention for NetCDF 
files (CF-NetCDF) compliance and Coupled Model Intercomparison Project (CMIP) interoperability in the next 
version of the ALMA standard.

In its first phase, PALS focused solely on single site (flux tower) analysis. It attracted about 230 users from more than 
60 institutions in 20 countries, of which about 20% were active users. This version of PALS has not been available 
since late 2014 after a Struts vulnerability forced us to take it offline. However, while limited in scope, this resulted in 
two successful MIPs: PLUMBER (Best et al., 2015; Haughton et al., 2016) and SavMIP (Whitley et al., 2016).
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For PLUMBER, land surface models were benchmarked for 20 observational FLUXNET sites ranging in 
geographical locations, climates, and land cover. Both simple physical models and empirical relationships were used to 
provide benchmarks for the sensible and latent heat fluxes in this study. The land surface models were not evaluated 
against each other but were individually ranked in comparison to the benchmarks.

The results showed that for standard statistical metrics, all of the land surface models had a similar performance 
relative to the benchmarks. The models had a better overall ranking compared to the simple physical models but were 
out-performed for both surface fluxes by a three variable piecewise linear regression. In addition, for the sensible heat 
flux, the models were outperformed by a single variable regression between the flux and the downward shortwave 
radiation. This demonstrates that further improvements can be made to the models without introducing additional 
complexity, but rather by making better use of the information contained in the forcing data.

Furthermore, assessing the performance of the model relative to the benchmarks for alternative statistical metrics 
based upon distributions showed that the models had differing overall rankings compared to the benchmarks. This 
suggests that previous development efforts among the international community have focused on optimizing for 
standard statistical metrics, but this does not necessarily result in overall better performance.

The second phase of PALS aims to broaden its focus and introduce new features. First, the system will not be 
specifically tailored to LSMs, so it will likely launch as http://modelevaluation.org/. All the existing PALS site-based 
LSM experiments, and additional global and regional LSM experiments, will still be available.

Next, experiment owners will be able to control the operation of the master analysis script. This means that as long 
as the JavaScript Object Notation (JSON)-based input/output requirements of the master analysis script are met, 
any analysis package can be used to perform the analyses for a given experiment. This means that incorporating 
evaluation packages such as ILAMB or Land surface Verification Toolkit (LVT) into the http://modelevaluation.org/ 
environment is possible.

We are also building this system to avoid the bottleneck that uploading large model outputs inevitably creates. By 
using a distributed architecture, where the “worker” nodes that actually perform the analysis (e.g., using Python or R) 
can be co-located with or at centers producing large model outputs, “uploading” a model output to this system need 
not involve the transfer of large files. Instead, the central web server optimally manages a collection of worker nodes 
to minimize analysis time. Once results are complete, analysis images and summary data are then sent to the central 
web server for display to users.

Figure A.1.1. Common statistics for each model are shown by average ranking from the PLUMBER benchmarking 
activity.
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An initial working version of the second phase system is running and undergoing testing. All code is available 
in a collection of open source GitHub repositories. Any suggestions, contributions or collaborations are 
actively encouraged.

A.2 PCMDI Metrics Package (PMP)
 Peter Gleckler
A more routine benchmarking and evaluation of models is envisaged to be a central part of the sixth phase of the 
Coupled Model Intercomparison Project (CMIP6). One purpose of the Diagnostic, Evaluation and Characterization 
of Klima (DECK) and CMIP historical simulations is to provide a basis for documenting model simulation 
characteristics (Meehl et al., 2014). In addition to scientifically targeted tools under development like the ILAMB 
package, two capabilities (Eyring et al., 2016a; Gleckler et al., 2016) will more broadly characterize CMIP DECK 
and historical simulations as new model experiments are published on the Earth System Grid Federation (ESGF). 
The foundation that will enable this to be efficient and systematic is the community-based experimental protocols 
and conventions of CMIP, including their extension to obs4MIPs, which serves observations in parallel to the CMIP 
output on ESGF. Here we summarize some aspects of one of these capabilities—the Program for Climate Model 
Diagnosis and Intercomparison (PCMDI) Metrics Package (PMP; Gleckler et al., 2016).

The PMP is built on US Department of Energy (DOE)-supported tools (Williams et al., 2014) and emphasizes the 
implementation of a diverse suite of summary statistics to objectively gauge the level of agreement between model 
simulations and observations. The PMP software is open source, has a wide range of functionality, and is being 
developed as a community tool with the involvement of several institutions. Collectively, the PMP, Earth System 
Model Evaluation Tool (ESMValTool), and ILAMB packages offer valuable capabilities that will be crucial for the 
systematic benchmarking of the wide variety of models and model versions contributed to CMIP6. This evaluation 
activity can, compared with early phases of CMIP, more quickly and openly relay to analysts and modeling centers 
the strengths and weaknesses of the simulations including the extent to which long-standing model errors remain 
evident in newer models. In addition to being strongly integrated with the data conventions of CMIP,  obs4MIPs 
and the ESGF, a priority for the PMP is to make all aspects of the analysis as traceable and reproducible as possible.  
All results from the PMP include a trail of the codes and 
dataset versions used to generate them.

We illustrate the type of summary statistics available 
via the PMP with three examples. The first (Figure 
A.2.1) is based on a recent paper (Ivanova et al., 2016) 
that examines how well simulated sea-ice agrees with 
measurements on sector scales and demonstrates that the 
classical measure of total sea-ice area is often misleading 
because of compensating errors. The second (Figure 
A.2.2) is also based on a recent paper (Covey et al., 2016) 
that highlights the amplitude and phase of the diurnal 
cycle of precipitation. A third example is given by a 
simple “portrait plot” comparing different versions of the 
same model (Gleckler et al., 2016) in Atmospheric Model 
Intercomparison Project (AMIP) mode.

The PMP is under rapid development with a priority 
of providing a diverse suite of summary statistics for 
all historical and DECK simulations to researchers 
and modeler developers soon after each simulation is 
published on the ESGF. The package is designed to enable 
community contributions. All the PMP code is hosted at 
https://github.com/PCMDI/pcmdi_metrics.

Figure A.2.1. Model ranking using mean-square 
error (MSE) of the total sea-ice area annual cycle: (a) 
Arctic scatter plot of decomposed and global errors; 
(b) Antarctic scatter plot of decomposed and global 
errors; (c) Arctic scatter plot of decomposed and global 
errors model ranking; and (d) Antarctic scatter plot of 
decomposed and global errors model ranking.
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A.3 ESMValTool
 Veronika Eyring
A community diagnostics and performance metrics 
tool for the evaluation of Earth system models (ESMs) 
has been developed that allows for routine comparison 
of single or multiple models, either against predecessor 
versions or against observations. The priority of 
the effort so far has been to target specific scientific 
themes focusing on selected essential climate variables 
(ECVs), a range of known systematic biases common 
to ESMs, such as coupled tropical climate variability, 
monsoons, Southern Ocean processes, continental 
dry biases, and soil hydrology–climate interactions, as 
well as atmospheric CO2 budgets, tropospheric and 
stratospheric ozone, and tropospheric aerosols. The 
tool is being developed in such a way that additional 
analyses can easily be added. A set of standard 
namelists for each scientific topic reproduces specific 
sets of diagnostics or performance metrics that have 
demonstrated their importance in ESM evaluation 
in the peer-reviewed literature. The Earth System 
Model Evaluation Tool (ESMValTool; doi:10.17874/
ac8548f0315; Eyring et al., 2016a) is a community 
effort open to both users and developers encouraging 
open exchange of diagnostic source code and 
evaluation results from the CMIP ensemble. This will 
facilitate and improve ESM evaluation beyond the state 
of the art and aims at supporting such activities within 
CMIP and at individual modeling centers. Ultimately, 
we envisage running the ESMValTool alongside the 
Earth System Grid Federation (ESGF) as part of a 
more routine evaluation of CMIP model simulations 
while using observations available in standard formats 
(e.g., obs4MIPs) or provided by the user.

The ESMValTool consists of a workflow manager and 
a number of diagnostic and graphical output scripts 
(Figure A.3.1). The workflow manager is written in 
Python, whereas a multilanguage support is provided 
in the diagnostic and graphic routines. ESMValTool 
takes the name of a namelist file as a single input 
argument, and the namelist files are text files written 
using the eXtensible Markup Language (XML) syntax 
to define the model and observational data to be read, 
the variables to be analyzed, and the diagnostics to be 
applied. A large collection of standard namelists are 
included in ESMValTool (v1.0) for analyzing a wide 
collection of ECVs across atmosphere, ocean, sea ice, 
and land components. For example, one namelist 
can be used to reproduce the figures from the climate 
model evaluation chapter of IPCC AR5 (Chapter 
9, Flato et al. [2013]) (Figure A.3.2). Another XML 
namelist will produce a plot comparing the RMSE over 

Figure A.2.2. Harmonic dial plots of the amplitude and 
phase of Fourier components, after vector averaging 
over land and ocean areas separately, for Tropical Rainfall 
Measurement Mission (TRMM) 3B42 observations (black 
lines and dots), for the four highest-resolution CMIP5 
models (colored lines and dots), and for the other 17 
Atmospheric Model Intercomparison Project (AMIP) 
models from CMIP5 with only July results shown for 
clarity (gray dots). For TRMM and the highest-resolution 
models, solid lines mark January results, whereas dashed 
lines mark July results.

Figure A.2.3. Figure A2.3: Relative error measures of 
different developmental tests of the Geophysical Fluid 
Dynamics Laboratory (GFDL) model in AMIP mode. 
The error measure is a spatial root-mean-square error 
(RMSE) that treats each variable separately. The color 
scale portrays this as a relative error by normalizing the 
result by the median error of all model results (Gleckler 
et al., 2008). For example, a value of 0.20 indicates that a 
model’s RMSE is 20% larger than the median error for that 
variable across all simulations, whereas a value of –0.20 
means the error is 20% smaller than the median error. 
Credit: Erik Mason/GFDL.
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different sub-domains for net biosphere productivity, leaf area index, gross primary productivity, precipitation, and 
near-surface air temperature like that of Anav et al. (2013) (Figure A.3.3).

Figure A.3.1. Schematic overview of the ESMValTool (v1.0) structure. The primary input to the workflow manager is a 
user-configurable text namelist file (orange). Standardized libraries/utilities (purple) available to all diagnostics scripts 
are handled through common interface scripts (blue). The workflow manager runs diagnostic scripts (red) that can be 
written in several freely available scripting languages. The output of the ESMValTool (gray) includes figures, binary 
files (NetCDF), and a log file with a list of relevant references and processed input files for each diagnostic.

We aim to move ESM evaluation beyond the state of the art by investing in operational evaluation of physical and 
biogeochemical aspects of ESMs, by using process-oriented evaluation, and by identifying processes most important 
to the magnitude and uncertainty of future projections. Our goal is to support model evaluation in CMIP6 by 
contributing the ESMValTool as one of the standard documentation functions and by running it alongside the ESGF. 
In collaboration with similar efforts, we aim for a routine evaluation that provides a comprehensive documentation 
of broad aspects of model performance and its evolution over time and to make evaluation results available at a time 
scale that was not possible in CMIP5. The ability to routinely perform such evaluation will drive the quality and 
realism of ESMs forward and will leave more time to develop innovative process-oriented diagnostics – especially 
those related to feedbacks in the climate system that link to the credibility of model projections.
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Figure A.3.2. Annual-mean surface air temperature (upper row) and precipitation rate (mm day–1) for the period 
1980–2005. The left panels show the multi-model mean and the right panels the bias as the difference between the 
CMIP5 multi-model mean and the climatology from ERA-Interim and the Global Precipitation Climatology Project for 
surface air temperature and precipitation rate, respectively. The multi-model mean near-surface temperature agrees 
with ERA-Interim mostly within ±2°C. Larger biases can be seen in regions with sharp gradients in temperature, for 
example in areas with high topography such as the Himalaya, the sea ice edge in the North Atlantic, and over the 
coastal upwelling regions in the subtropical oceans. Biases in the simulated multi-model mean precipitation include 
too low precipitation along the equator in the western Pacific and too high precipitation amounts in the tropics 
south of the equator. Similar to Figures 9.2 and 9.4 of Flato et al. (2013) and produced with ESMValTool namelist_
flato13ipcc.xml.
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A.4 NASA Land Surface Verification Toolkit (LVT) 
 Sujay Kumar
The NASA Land surface Verification Toolkit (LVT; http://lis.gsfc.nasa.gov/software/lvt; Kumar et al., 2012) 
is an open-source, formal system for land surface model evaluation and benchmarking. LVT is designed to 
provide an automated, consolidated environment for model evaluation and includes approaches for conducting 
both deterministic and probabilistic verification. A key motivation in the development of LVT is the concept of 
“model–data fusion” (MDF; Raupach et al., 2005; Williams et al., 2009), which is the paradigm for combining the 
information from models and observational data, to aid the formulation, characterization, and evaluation of models 
in a structured manner. The evaluation step is a critical element that is necessary to complete the MDF paradigm. 
LVT was initially developed to augment the land surface modeling and data assimilation framework known as the 
Land Information System (LIS; Kumar et al., 2006). LIS includes several key components of the MDF paradigm, 
including a suite of land surface models, computational tools such as data assimilation, optimization and uncertainty 
estimation. Together, LVT and LIS provide a comprehensive environment to enable the MDF paradigm.

LVT is implemented using object oriented framework design principles as a modular, extensible, and reusable system. 
The software is designed with explicit interfaces for incorporating support for observational datasets and evaluation 
metrics. The interoperable nature of the LVT design allows the reuse of existing features with new components that 
are developed. For example, a newly incorporated support for an observational dataset can take advantage of all 
available analysis metrics without needing any additional implementation.

Figure A.3.3. Relative space–time RMSE calculated from the 1986–2005 climatological seasonal cycle of the CMIP5 
historical simulations over different sub-domains for net biosphere productivity (NBP), leaf area index (LAI), gross 
primary productivity (GPP), precipitation (pr) and near-surface air temperature (tas). The RMSE has been normalized 
with the maximum RMSE to have a skill score ranging between 0 and 1. A score of 0 indicates poor performance of 
models reproducing the phase and amplitude of the reference mean annual cycle, whereas a perfect score is equal 
to 1. The comparison suggests that there is no clearly superior model for all variables. All models have significant 
problems in representing some key biogeochemical variables such as NBP and LAI, with the largest errors in the tropics 
mainly because of a too weak seasonality. Similar to Figure 18 of Anav et al. (2013) and produced with ESMValTool 
namelist_anav13jclim.xml.
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 A key design consideration in LVT is the support of observational datasets in their native formats, enabling the 
continued use of the system without requiring additional implementation or data preprocessing. Currently a large 
suite of in situ, remotely sensed, and other model and reanalysis datasets are implemented in LVT. The spatial and 
temporal scales of these measurements vary significantly. LVT handles the geospatial and temporal transformations of 
these datasets from their native formats to enable flexible analysis configurations.

In recognition of the need for having a variety of performance evaluation metrics for model evaluation, LVT supports 
a suite of analysis metrics. Aside from the traditional accuracy-based measures, LVT also includes metrics to aid model 
identification, such as entropy, complexity, and information content. These measures can be used to characterize 
the tradeoffs in model performance relative to the information content of the model outputs. The accuracy-focused 
metrics that quantify model performance using residual-based measures often do not provide insights on the 
robustness of the model under future or unobserved scenarios. The availability of metrics such as those based on 
information theory helps in mitigating these limitations. In addition to model verification, LVT also provides an 
environment for model benchmarking, where benchmark values for each metric are established a priori (Best et al., 
2015). The development of such benchmarks is facilitated in LVT, using regression and machine learning techniques. 
More recently, application-oriented, end-user focused diagnostic measures have been developed. For example, LVT 
can be used to produce estimates of drought/flood risks by analyzing the distribution of soil moisture, streamflow, or 
evaporative fluxes from the land surface model. Finally, LVT also includes uncertainty and ensemble diagnostics based 
on Bayesian approaches that enable the quantification of predictive uncertainty in land surface model outputs.

LVT is an evolving framework and continues to be enhanced with the addition of new analysis capabilities and the 
incorporation of terrestrial hydrological datasets. The capabilities in LVT provide novel ways to characterize LSM 
performance, enable rapid model evaluation efforts, and are expected to help in the definition and refinement of a 
formal benchmarking and evaluation process for the land surface modeling community.

A.5 ABoVE Benchmarking System 
 Joshua B. Fisher
The Arctic-Boreal Region (ABR) is a major source of uncertainties for terrestrial biosphere model (TBM) simulations. 
These uncertainties are precipitated by a lack of observational data from the region, affecting the parameterizations 
of cold environment processes in the models. Addressing these uncertainties requires a coordinated effort of data 
collection and integration of the following key indicators of the ABR ecosystem: disturbance, flora / fauna and related 
ecosystem function, carbon pools and biogeochemistry, permafrost, and hydrology. We are developing a model-data 
integration framework for NASA’s Arctic Boreal Vulnerability Experiment (ABoVE), wherein data collection for the 
key ABoVE indicators is driven by matching observations and model outputs to the ABoVE indicators. The data 
are used as reference datasets for a benchmarking system which evaluates TBM performance with respect to ABR 
processes. The benchmarking system utilizes performance metrics to identify intra-model and inter-model strengths 
and weaknesses, which in turn provides guidance to model development teams for reducing uncertainties in TBM 
simulations of the ABR. The system is directly connected to the International Land Model Benchmarking (ILAMB) 
system, as an ABR-focused application.
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Appendix B. 
Metrics for Major Processes
B.1 Ecosystem Processes and States 
 Nancy Y. Kiang and Ben Bond-Lamberty
Ecosystem processes are the full suite of interactive components of an ecosystem that determine a column mass 
budget and fluxes into and out of the system vertically and horizontally. Ecosystem components are typically 
distinguished in land models into modules for soil biogeochemistry coupled with vegetation dynamics (biophysics, 
phenology, growth, ecology), and with these biological components coupled to surface hydrology and the atmosphere. 
Thus, system processes are (1) the vertical interactions between these components from the ground hydrology to the 
atmosphere (e.g., the exchange of water, litter, nutrients, and sum of energy and gas fluxes) and (2) the horizontal 
exchanges and external forcings that lead to heterogeneous boundary conditions for these column physics (e.g., edge 
effects, transport, disturbance, and dispersal, the latter being covered under the section on Vegetation Dynamics).

Ecosystem states are the magnitudes of these fluxes and mass storage pools at a point in time, as well as their 
trajectories with respect to time or another driver. The pools may be categorized according to system components and 
various classifications of their respective compositions, such as biodiversity, chemical mix, and geometric structure.

Table B.1.1 provides a summary of ecosystem processes addressed in this section, focusing on processes that couple 
ecosystem components with each other. Table B.1.2 provides a summary of ecosystem state variables that are targets 
for benchmarking, together with data sets that could serve as these benchmarks. There is some natural overlap with 
other sections of this report that focus on the ecosystem components. Further details on identifying appropriate 
model ecosystem diagnostics and suitable data for model benchmarking serves a primary goal of improving ecosystem 
process representation.

Table B.1.1. Ecosystem coupling processes.

 Physics
Biophysics and 

Biogeochemistry Ecology

Land–Atmosphere Observed or GCM 
meteorology

Canopy albedo

Surface energy balance

Water vapor conductance

CO2 exchange

Autotrophic respiration

Heterotrophic respiration

Fire emissions

Anthropogenic forcings

Vegetation–Soil Canopy air: temperature, 
humidity, CO2 
concentration

Litterfall mass and quality 
(C:N ratio, lignin content)

Nitrogen dynamics

Microbial-vegetation 
nutrient competition

Hydrology–Soil–Vegetation Layers vs. catchments

Interception/throughfall

Root water uptake, 
stomatal conductance

Multi-pool, multi-layer soil

(Dissolved organic carbon)

Leaching of NO3
-

 

Horizontal Exchange Edge effects in 
meteorology

General circulation of CO2 
and fire emissions

Managed land dynamics, 
land use; Natural 
and anthropogenic 
disturbance, fire
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Table B.1.2. Ecosystem State Model Diagnostics vs. Measurements.

 

Equilibrium spin-up 
state 

Preindustrial control 
Partitioning/

classification of mass 
balances and fluxes.

Responses/Sensitivities 
Elevated CO2 Uncertainties

Land–Atmosphere Model CO2, surface fluxes

CO2 record: flasks, ice cores

Products from FLUXNET

Model mean, seasonal 
timing latitudinal 
gradients

Airborne fraction

 

Vegetation Canopy Vegetation structure

Net zero flux

FLUXNET, inventory, 
satellite

Seasonal timing, net fluxes

Land use and land cover 
change (LULCC)?

 

Soil Model litter layer, SOC, 
soil N

Soil carbon databases

Land Use Model 
Intercomparison Project 
(LUMIP) management data 
sets

dC/dX, dC/dt

Soil flux databases

High observational 
uncertainties

Specific Points and Recommendations

Key recommendations to improve evaluation, benchmarking, and process representation of ecosystem processes and 
states in ESMs are as follows:

» To interpret and compare the performance of models relative to benchmarks, it is necessary to analyze the 
component parts of each model and not merely their emergent behavior. There should be more focus on 
comparing process representation and not just diagnostic variables.

» To create standards for benchmarks, the land modeling community must develop clear guidelines on how different 
statistics and visualizations (e.g., bias, RMSE, Taylor diagrams) are used and how they complement each other for 
different benchmarking purposes. 

» Observational data often lack quantified uncertainties. These should be required as an essential component of 
data products in benchmarking tools like ILAMB to be useful to inform, constrain, and benchmark models. 
Uncertainty in forcings, boundary condition data sets, and parameter sets is needed to quantify weights properly 
in propagation of uncertainty in model simulations. 

» In model development, it is critical that tests are designed to eliminate confounding factors that would affect 
interpretation of the effects of new model physics. Examples of confounding factors that influence model 
performance other than a new model update include forcings data sets and boundary conditions, for which 
controls should be selected to identify model improvements versus other factors.

» To improve model process representation, the observation and modeling communities should communicate 
regularly their perspectives with each other so that (1) the measurement community develops functional 
relationships from data sets that are suitable for use in models and (2) modelers can keep informed of insights 
from new data. Modelers need to provide the observation community with a clear definition of needs, such as 
through a scaled-based matrix of measurement needs for models.
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B.1.1 Scientific Challenges and Opportunities for Model Evaluation

Accuracy: A number of statistical and visualization approaches have been used to evaluate model performance (e.g., 
bias, RMSE, phase, amplitude, spatial distribution, scores, Taylor diagrams, and functional relationships/perturbation 
sensitivity) (Gleckler et al., 2008; Doney et al., 2009; Luo et al., 2012). To create standards for benchmarks, the 
land modeling community must develop clear guidelines on how different statistical measures are used and how they 
complement each other for different benchmarking purposes. With regard to known issues with specific data, the 
ability of both measurements and models to close energy and carbon budgets is advocated as a continued important 
accuracy criterion.

Uncertainty: Uncertainty in observational data is often lacking and should be demanded as an essential component 
of data products in benchmarking tools like ILAMB to be useful to inform, constrain, and benchmark models. 
Uncertainty in forcings, boundary condition data sets, and parameter sets is needed to quantify weights properly in 
propagation of uncertainty in model simulations. 

Sensitivity: Insight into model behavior can be gained through checking relationships: variable vs. variable, vs. time, 
vs. drivers, turnover/response rates. Because process representations generally directly encode sensitivities found in 
observations, directly examining the different models’ physics should be the first analytical step for evaluating and 
anticipating their different behaviors. However, sensitivity between coupled ecosystem components is an area worth 
developing for benchmarking for emergent properties of ecosystems.

Scaling—temporal: Understanding at which time scale a process has significant influences is vital to representing 
it appropriately in models. To discern these time scales from both observational data as well as model outputs, a 
suggested approach is Fourier transforms of time series and periodicities. This has been used, for example to analyze 
patterns of diurnal, seasonal, and interannual cycles.

Scaling—spatial: In scaling up (e.g., from sampling points at a site, from sites to regions, and regions to the globe), 
land modelers must remain cognizant that each change in scale entails different relevant ecosystem processes (cf., 
Moorcroft et al., 2001). From sampling within a field site, the distribution and variability of point measurements 
with microclimate and individual plant heterogeneities need to be quantified well to scale up model processes to 
the ecosystem scale (cf., Shao et al., 2013; Keenan et al., 2012; Todd-Brown et al., 2013). Scaling up from site-
based studies to the regional and global scale must account for disturbance effects, anthropogenic forcings, and 
teleconnections that are not observed at the site scale but that operate at the larger scale. At the same time, to account 
for numerical issues, approaches must be developed to downscale or tune column physics at the ESM grid scale for 
processes that operate at the subgrid scale, such as soil moisture and precipitation. 

B.1.2 New Metrics and Benchmarking Approaches

Benchmarking metrics provide a standardization for model evaluation and a bridge between what land modelers can 
simulate and what the observational community can measure. The advent of size-structured and patch-age based 
second generation dynamic global vegetation models (DGVMs) and trait-based vegetation models, the introduction 
of more ecosystem types and land use change, and the availability of more measurements from long-term sites and 
recent satellites, all motivate re-evaluation of old benchmarking metrics and addition of new ecosystem metrics.

Table B.1.3 provides a summary of key ecosystem process and state metrics for standardization in the land modeling 
community. These draw upon also the efforts of the various model intercomparison projects (MIPs) of the Coupled 
Model Intercomparison Project 6 (CMIP6), particularly the Coupled Carbon Cycle Climate Model Intercomparison 
Project (C4MIP), where the goal is to constrain future climate projections (e.g., identify emergent constraints). As 
with C4MIP, we recommend the community develop standard model diagnostic variables, units, and time scales 
of averaging.

The metrics include pre-industrial spin-up benchmarks where there are no observations to compare to, but an 
equilibrium model state must be defined, such as potential biomass and equilibrium soil carbon. The metrics also 
include variables suitable for evaluation against the observational record. We recommendation that models also 
develop instrument simulators to output the fundamental measurements observed by remote sensing instruments. 
These could include updating the fundamental canopy radiative transfer model (RTM) code such that it outputs 
canopy reflectance or thermal brightness temperatures based on the internal canopy structure, optical properties, or 
thermal properties. In addition, an important component would be the capability to simulate basic LiDAR waveform 
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information based on canopy properties. That capability should be based on the model’s RTM representation, to best 
compare with LiDAR observations, instead of converting to estimates of height or biomass. For example, LiDAR 
waveforms of the simulated vegetation structure could be produced for direct comparison with LiDAR measurements 
by using an internal radiative transfer model. Other examples are simulation of solar-induced fluorescence (SIF) or 
shortwave albedo in the same band as measurements.

Table B.1.3. New Metrics/Model Diagnostics/Benchmarks.

 Activity
Physical 

Properties
Ecosystem 
Structure

Temporal 
Diagnostics

Spatial 
Diagnostics

Land–Atmosphere    Seasonal timing Horizontal column

Vertical regional

Vegetation Canopy Fluorescence Albedo Age since 
disturbance. Plant 
age, geometry, 
demography, 
biomass.

LiDAR waveforms

Seasonal timing

Decadal- 
centennial 
prediction

RMSE, uncertainty

Soil   Parameter values - 
data repository

Seasonality of 
fluxes

RMSE, interpolation

Vegetation–soil   Litterfall mass, 
litter layer

Seasonality Requires data

B.1.3 Observational Data Needs and Priorities

Current best-available datasets must be selected based the relevant time scale (annual mean, seasonal cycle, 
interannual variability, trend) and the spatial extent and resolution for comparison (site, regional, global). New  
in situ or remote sensing measurements are needed for global soil depths, isotope tracers, leaf area index, and many 
other state variables. A wide variety of measurements are needed to characterize specific phenomena of interest, 
including drought. Appropriate metadata (e.g., site history) must accompany all field data. Synthesis of data from 
a variety of sources (e.g. FLUXNET, TRY, Allometree, NECTAR), and coordination among data centers providing 
open standard APIs is crucial.

Table B.1.4. Observational Data Needs.

 
Ecosystem 
Structure Physics Biogeochemistry Ecology Scaling Up

Atmosphere     Flux inversion 
products

Vegetation Canopy Age distribution 
of disturbance, 
plant demography. 
Height. 
Root exudates. 
Reproduction. 
Allometric leaf 
area index and 
seasonality of 
traits.

Seasonality of 
leaf traits

Hyperspectral 
data

Vegetation 
structure

Site:

Airborne:

Remote:

Cover change Beyond PFTs

“Decomposition 
functional types” 
(Bond-Lamberty 
et al., 2016b)

Soil More soil state 
and response 
data needed: C, 
N, bulk density. 
Partitioning of 
soil hetero- vs. 
autotrophic 
respiration.

 Soil respiration.

Updated gridded 
soil respiration 
observational data 

Peatlands  
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B.1.4 Model Development and Output Requirements

To improve ecosystem process representation, the land modeling community should investigate advances to these 
aspects of coupling ecosystem components:

» Energy exchange: Second generation vegetation models that represent canopy heterogeneity and seasonally 
prognostic leaf albedo should be evaluated to determine if they improve the prediction of surface albedo, canopy 
and ground temperature, and surface energy balance.

» Water exchange: First, litterfall is a poorly constrained ecosystem exchange process between vegetation and 
soil. The mulching effect of a litter layer to insulate the soil and conserve soil moisture is well known but lacks a 
mechanistic modeling approach for ESM grid scales. Matthews (1997) produced a benchmark estimate of litter 
production and pools with regard to annual dry matter production according to vegetation type and climate. 
However, seasonal variation in the physical properties of a litter layer (mass, heat capacity, moisture conductivity) 
by ecosystem type and seasonally is poorly known. Eddy flux sites should be monitored to develop relationships 
between temporally varying litterfall quantity, decomposition processes, and litter layer physical properties. 
Second, water stress remains a tuned control on plant stomatal conductance relative to a particular land model’s 
soil hydrology. ESM land surface models do not typically have very deep soils, meaning that water stress and 
conductance of deep-rooted plants are inadequately represented. Pelletier et al. (2016) have produced the first 
global gridded map of soil thicknesses to bedrock, and implementation of this soil depth map in more ESM land 
models will enable deeper-rooted soil–vegetation–atmosphere coupling in the conductance of water vapor.

» Carbon exchange: Litterfall from vegetation as an input to soil biogeochemistry is subject to high uncertainty in 
model simulations due to uncertainty in leaf mass per leaf area and weak performance of leaf phenology models 
for the timing of senescence. Introduction of deeper roots with deeper soils will alter vegetation–soil and water–
carbon coupling in modeled ecosystems, as it will motivate revision of each DGVM in its distribution of soil 
carbon from senescing roots, and in plant allometry and carbon allocation to roots. Phenological timing remains 
poorly simulated but the approaches of Stöckli et al. (2008, 2011) and Caldararu et al. (2014) are worthy of 
experimentation in more land models.

» Nutrient exchange: For those ESMs that include soil–plant nitrogen dynamics, plant biomass pools typically have 
fixed C:N ratios, and their growth drives demand for soil N. N inputs are generally from deposition. Improved 
representation with varying C:N should be explored.

Table B.1.1. Ecosystem coupling processes.

 Physics Biogeochemistry Ecology

Atmosphere  CH4  

Vegetation Canopy Beyond PFTs

Leaf physiology

Phenology

Respiration partitioning

SIF

C:N:P Community structure: 
height-stratified canopies

Managed land dynamics

Wetlands

Herbivory, insects

Climate change/elevated 
CO2 responses

“Decomposition functional 
types” (Bond-Lamberty et 
al., 2016b)

Soil Layers vs. catchments

Permafrost

Deep soil

Erosion

C:N:P, CH4, N2O Other functional pools?

Ocean coupling Runoff Nutrient fluxes  
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B.2 Hydrology 
 Randal D. Koster and Hongyi Li 

B.2.1 Scientific Challenges and Opportunities for Model Evaluation

The key role of hydrology in land surface models (LSMs) is to partition incoming precipitation water into 
evapotranspiration (ET), runoff (streamflow), and changes in soil moisture storage. These water cycle calculations are 
intrinsically tied to energy balance calculations (e.g., through the connection between ET and latent cooling) and 
carbon balance calculations (e.g., through the control of stomatal conductance on transpiration). Soil moisture (its 
vertical profile and spatial variations) lies at the heart of land surface control over moisture fluxes, including both ET 
and runoff.

A wide variety of terrestrial processes are relevant to surface hydrology: ET and its component parts, streamflow 
generation, snow, permafrost, subsurface moisture transport, and human water management and disturbance, to 
name just a few. Also of relevance are groundwater dynamics, with different timescales connecting deep and shallow 
groundwater processes with surface hydrology. River routing is a key process to consider; evaporation from stream 
surfaces provides moisture to the atmosphere, and the streams and rivers themselves inject fresh water into oceans and 
lakes, a needed input flux for ocean models. Rivers also transport and transform nutrients through the Earth system, 
and lakes and wetlands slow these transport times. Additional relevant processes are discussed below.

Current State of Process Representations in Models

Today’s LSMs compute a broad suite of hydrological fluxes (e.g., infiltration, interception loss, surface runoff, 
baseflow, soil moisture storage change). However, the accuracy of these fluxes is arguably limited by key disparities in 
model complexity. For example, in many models the “vertical” treatment of the land surface is highly detailed, with 
multiple stacked soil layers overlain by a complex canopy structure. One-dimensional physics can thus be said to be 
well-represented. However, many aspects of hydrological behavior are affected equally by horizontal complexity—
spatial variability (not explicitly resolvable in climate model-based land surface schemes) in topography, vegetation 
(including root distributions), soil properties, and soil moisture itself. Emphasizing complexity in the vertical at 
the expense of the horizontal leads to poor model performance. Balancing process complexity for strongly coupled 
processes (e.g., ET versus runoff formulations) is also important for good model performance.

Poor representation of runoff is also reflected in (1) the lack of appropriate complexity in groundwater modeling 
and (2) underrepresented aquatic processes, especially in rivers. Groundwater formulations are restricted by the 
lack of lateral fluxes between land grid cells and the lack of realistic, spatially variable depths to bedrock. Both lead 
to poor simulation of groundwater table dynamics, which can interact with runoff generation processes. Riverine 
processes are also oversimplified, leading to a lack of lateral water fluxes between terrestrial water bodies (e.g., rivers, 
lakes, wetlands) and land, which will modulate the soil moisture at certain spatial and temporal scales. It also leads 
to underrepresented linkages to the atmospheric model via water, energy, and carbon fluxes from the river water 
surface (particularly when inundation is not properly modeled), and to the ocean model via terrestrial discharges at 
river mouths.

Existing Approaches for Assessing Model Performance

Many approaches are currently used to assess land model performance in producing hydrological fluxes. Flux tower 
data are used to assess ET, for example, and streamflow measurements (once corrected for human influence) are used 
to assess runoff production. In situ soil moisture measurements have been used to evaluate model soil moisture, and 
the advent of satellite-based soil moisture measurements is allowing such validation to proceed at the global scale. 
Satellite-based datasets of ET and vegetation phenology (e.g., NDVI) have more recently been used to evaluate land 
model output.
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B.2.2 New Metrics and Benchmarking Approaches

New Metrics, Scores, and Functional Relationships

New work is needed to better evaluate hydrological processes in LSMs. For example, these models produce runoff 
(streamflow), which is reasonably well measured. While annual and seasonal streamflow in unmanaged systems is 
already a staple of model evaluation, work is needed to extend current time series analyses to determine if models 
reproduce slow versus fast responses and capture the impact of managed flows. Similarly, models produce soil 
moisture information that could be evaluated in the context of drought identification and potentially lead to a more 
useful drought index.

Since direct measurements of many hydrological fluxes are unavailable, methods for novel indirect estimation of these 
fluxes should be developed. For example, satellite-based fluorescence measurements may prove useful for evaluating 
transpiration, and other vegetation-focused measurements (e.g., NDVI) may be useful for constraining land models 
with dynamic vegetation. Functional relationships between directly measurable variables and those that are not could 
be very useful in hydrologically ungauged areas. For example, functional relationships have been reported between 
the Horton index (the ratio of catchment ET and available soil moisture for ET) and NDVI, between the aridity 
index (the ratio of evaporative energy and annual precipitation) and floods, etc. The capability of LSMs to reproduce 
such functional relationships could enable diagnosis not only of the effectiveness of the representation of individual 
processes but also the balance of complexity in the treatments of model components.

The joint control of soil moisture over ET and runoff in nature and in LSMs suggests one potentially valuable 
benchmarking approach. Because ET and runoff both vary with soil moisture, they effectively vary with each other. 
A land model should be able to reproduce observations-based relationships between ET and streamflow production 
efficiencies, with soil moisture (a largely model-dependent variable) taken out of the picture. Techniques for such 
benchmarking currently exist.

Since most applications of LSMs and ESMs are large-scale in nature, the influences of human systems on the water 
cycle are not negligible. Caution is thus necessary regarding the role of human impacts while designing and applying 
new metrics over large scales. A related issue is potential nonstationarity: a model may validate well for present-
day climate, but will it also perform well under a modified climate? Evaluations should proceed with this concern 
in mind.

Current Best-available Data Sets for Specific New Metrics

Existing datasets can be used as the basis for new metrics. For runoff and streamflow-related metrics, Model 
Parameter Estimation Experiment (MOPEX) data are largely ideal for pristine headwater watersheds over the United 
States and Global Runoff Data Center (GRDC) data are the best available for global streamflow metrics, though 
because the GRDC basins are largely regulated, caution is needed in their use. For soil moisture-related metrics, both 
in situ measurements and satellite-based datasets (SMOS, SMAP, ASCAT) are of great value.

B.2.3 Observational Data Needs

Gaps in Current Data Availability

The lack of snow water equivalent (SWE) data on the global scale is a significant deficiency. Moreover, direct 
measurements of ET at large spatial scales are not available; at best we have access to indirect evaluations through, 
for example, the analysis of streamflow (see above), the upscaling of FLUXNET site data using satellite information 
(e.g., NDVI), or the interpretation of diurnal temperature cycles in terms of latent heat flux. Furthermore, while 
streamflow data are available, separate datasets are needed for managed and unmanaged systems. Human impacts also 
take the form of irrigation, and irrigation data are sparse, if not absent. Collocation of different measurements would 
greatly increase their value.
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New in situ or Remote Sensing Measurement Needs

A number of currently underutilized in situ datasets would contribute significantly to the evaluation of simulated 
land surface hydrology. For example, sap flow measurements may provide valuable information on transpiration, and 
direct or indirect measurements of macropore structures are still lacking. Remote sensing has the potential to provide 
a number of datasets relevant to evaluating land model hydrological fluxes. The ECOSTRESS mission, for example, 
focuses on ET, MODIS provides information relevant to both ET and snow, ASO also provides snow information, 
GPM provides precipitation data, SMAP provides data on surface soil moisture, GRACE data are relevant to 
terrestrial water storage, and SWOT (and AirSWOT) will provide useful information on surface runoff. The global 
coverage of these datasets gives them unprecedented value for the evaluation of land model products. Measurements 
are never perfect, and all measured variables should be provided with associated uncertainty estimates.

Spatial and Temporal Extent and Resolution Requirements

Any metric for evaluating a land model’s simulation of hydrology needs to be valid for a large spatial area; local site 
measurements (e.g., flux towers) are, in isolation, inadequate. This is because: (i) the key hydrological flux, runoff 
(streamflow), is not measured at local sites; and (ii) land surface models are meant to produce large-area estimates 
of surface fluxes. Runoff production and ET vary substantially in space as a result of spatial heterogeneity in soil 
moisture, soil properties, and vegetation properties. Hence the measurement of runoff production at a local site has 
limited usefulness, even if the measurements are of high accuracy. Stream gauge measurements, in contrast, integrate 
spatially the runoff generated across a basin and are thus ideal targets for land model hydrological validation; they 
constitute a useful basis for new metrics and benchmarking. By validating large-scale runoff through streamflow 
measurements, the modeler is also arguably benchmarking aspects of large-scale ET.

Synthesis Activities Needs and Approaches

Combining different available soil moisture datasets into a single, long-term dataset for model evaluation would be 
useful. Such a synthesized dataset can be derived from in situ soil moisture measurements and a number of different 
satellite-based soil moisture products. Parallel work on model development is needed to bring the land model’s soil 
moisture variables more in line with these measurements. Another example of a proposed synthesis activity is the 
development of a global dataset of pristine (unmanaged) watersheds, similar to the MOPEX dataset but extended 
to the global domain. The content can potentially even be extended to incorporate additional watershed-scale 
measurements or estimates such as soil moisture or SWE, which might provide new insights not underpinned by the 
in situ measurements. 

B.3 Atmospheric CO2 
 Gretchen Keppel-Aleks and William J. Riley

B.3.1 Scientific Challenges and Opportunities for Model Evaluation

Atmospheric CO2 integrates both land and ocean fluxes over large spatial scales, providing a unique constraint on 
integrated fluxes. The concentration footprint of atmospheric CO2 ranges 106 km2 to hemispheric, depending on the 
location, altitude, and vertical extent of the observation. The fact that atmospheric CO2 integrates over large areas 
and is quite sensitive to atmospheric transport complicates the use of CO2 for benchmarking because model–data 
mismatch may be attributed to either carbon fluxes or atmospheric transport. Therefore, it would be possible to alias 
a transport-induced error into a comparison intended to evaluate carbon fluxes. At this point, mismatch in CO2 
diagnostics for predictive models may be dominated by carbon exchange, but constraining error in the atmospheric 
transport operator is crucial and will become a more significant source of error as carbon cycle models evolve. Despite 
the complication of these characteristics, atmospheric CO2 has been used successfully to benchmark simulated 
time series (e.g., Lindsay et al., 2014), seasonal patterns (e.g., Keppel-Aleks et al., 2013), functional relationships at 
interannual timescales (e.g., Keppel-Aleks et al., 2014), and multi-decadal trends (e.g., Graven et al., 2013). CO2 
has also been used as emergent constraints (e.g., Cox et al., 2013; Hoffman et al., 2014; Figure B.3.1). Functional 
relationships may provide insight into linkages between biogeochemistry and physical climate, and thus will be useful 
for emergent constraints on centennial scale prediction.
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There are multiple opportunities to develop atmospheric CO2 as a benchmark. Some fully coupled ESMs have 
the capability to simulate the three-dimensional structure of CO2. Several ESMs include capabilities to simulate 
isotopic fractionation in terrestrial processes, and including a 3-D d13CO2 tracer would facilitate evaluation against 
observations from surface networks. Transport of CO2 throughout the atmosphere is relatively facile, because it is 
a passive tracer and, to first order, chemical formation in situ can be neglected. Further, the isotopic composition 
of CO2 can be used to attribute variations specifically to certain sources. For example, d13CO2 is a useful tracer 
of terrestrial CO2. Finally, there are opportunities to better integrate the use of atmospheric CO2 with local scale 
constraints, to identify model occasions when mismatches between local-scale observations and the models lead to 
regionally coherent biases.

Figure B.3.1. Hoffman et al. (2014) found an emergent constraint based on carbon inventories (left, for (a) 2060 and 
(b) 2100) and applied it to constrain future atmospheric CO2 projections from CMIP5 Earth system models, reducing 
both the mean and uncertainty range of CO2 mole fractions (right, for (a) 2060 and (b) 2100).

B.3.2 New Metrics and Benchmarking Approaches

Incorporating atmospheric CO2 observations with vertical resolution above the surface is an important goal for the 
benchmarking system that will permit disentangling transport-induced biases from the land (or ocean) flux biases 
the system is designed to constrain. Incorporation of isotopes of CO2 will also permit accounting of the contribution 
from land and ocean fluxes. The d13CO2 data are available at 95 National Oceanic and Atmospheric Administration 
(NOAA) flask observing sites, with many time series extending from the early 1990s to the present. 

Atmospheric CO2 likely plays a key role in emergent constraints because it integrates over the regional to global 
scales for which emergent constraints are most likely to provide value for future climate–carbon cycle predictions. 
Determining robust ways to use atmospheric data for emergent constraints should be an ongoing focus of discussion.

B.3.3 Observational Data Needs

Atmospheric CO2 data are publicly available and observations from all platforms are tied to the World Meteorological 
Organization (WMO) calibration standards. Within the past decade, remote sensing observations of atmospheric 
CO2 have gained prominence, and characterization of errors in observations have improved, especially from remote 
sensing. Observations to constrain the atmospheric transport operator are also crucial. Diagnostics for boundary layer 
depth, convective mixing, and horizontal advection would all provide insights into whether model–data mismatch 
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is due to carbon fluxes or atmospheric transport. Existing atmospheric CO2 data are fairly well archived, with 
data publicly available from NOAA (surface), CDIAC (aircraft campaigns and TCCON), and NASA (OCO-2). 
Maintaining and growing these archives of surface and atmospheric profile measurements along with estimates of all 
anthropogenic emissions over time is critical to meet a variety research needs in a warming world. Availability of other 
observations, including satellite remote sensing, varies by agency.

B.3.4 Model Development and Output Requirements

CO2 should be output at gridcell resolution with the vertical profile saved for comparison with aircraft campaigns, 
which occur in regions sparsely sampled by the long-standing surface network, and remote sensing platforms, which 
reduce potential model–data bias due to misrepresentation of vertical transport. Monthly frequency is the minimum 
temporal frequency, although process level insights could be gained by benchmarking diurnal and synoptic variations. 
Components of CO2 in the atmosphere from land, ocean, and fossil fuel sources (kg/kg), and specific humidity (kg/
kg) are necessary for column integration for comparison with satellite observations. Integration of isotopes of CO2, 
including d13CO2 should be expressed per mil (‰).

B.4 Soil Carbon and Nutrient Biogeochemistry 
 Gustaf Hugelius, Jinyun Tang, and the International Soil  
 Carbon Network (ISCN)

B.4.1 Introduction

Soils hold the Earth’s largest biogeochemically active organic carbon (C) pool, which has the potential for a significant 
feedback to climate. At roughly 2,000 Pg C, this stock is more than twice as large as the atmospheric C pool (Ciais 
et al., 2013). Over time and large spatial scales, the soil C stock is determined by its turnover, which is a function 
of input from plant photosynthesis and losses via microbial decomposition, both of which are mediated by nutrient 
biogeochemistry. At present, global scale C inputs to soil are roughly balanced by losses to the atmosphere. However, 
because of its large pool size, even small changes in the soil C balance may cause significant increases in atmospheric 
greenhouse gas concentrations, contributing to additional climate warming. Since the start of the industrial era, soils 
have sequestered a significant fraction of CO2 emissions from fossil fuel burning and human land use change (Ciais 
et al., 2013). However, under continued climate change and human intervention, soil C is expected to feedback with 
atmospheric C, and this balance may shift (Davidson and Janssens, 2006). Although urgently needed, quantification 
of how this balance may shift remains elusive, as many key processes that regulate the soil C stocks are poorly 
represented or missing in existing ESMs (Lehmann and Kleber, 2015).

B.4.2 Scientific Challenges and Opportunities for Model Evaluation

Broad-scale observations of soil C that span global environmental conditions are useful first order benchmarks for 
model predictions. For instance, observed global scale patterns provide undeniable evidence of the overarching 
climatic and biological controls on soil C and nitrogen cycling (Post et al., 1982; 1985). Thus, the degree of 
agreement between ESM predictions and observed global scale soil organic matter (SOM) patterns provides a baseline 
assessment of the ESMs’ predictive power, even though the range of complex interactions and processes that control 
SOM cycling in models have not been assessed. The soil C stocks produced by current ESMs (CMIP5 models) are 
in only fair agreement with global soil C distributions, and the models are unable to reproduce local to regional scale 
spatial soil C patterns or to quantify bulk C stocks (Todd-Brown et al., 2013). Soil C variability in models can largely 
be explained by modeled net primary productivity (NPP), but observed soil C stocks cannot be explained solely 
by NPP and temperature. This model–data discrepancy is partly due to large C stocks in permafrost and peatlands 
where soil freezing or anoxia limits decomposition, resulting in large accumulations of soil C even under limited NPP. 
Permafrost and peat formation are examples of strong environmental controls on soil C turnover, and a model that 
does not address these controls cannot reproduce observed C stocks.

Therefore, ESM development should focus on improving the key controls on soil C turnover such as biogeochemical 
nutrient dynamics and environmental controls of microbial activity, suggesting that useful benchmarks for ESM 
soil C dynamics should target soil C turnover. Presently, basic soil nutrient biogeochemical processes are lacking or 
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insufficiently represented in many existing models, which causes models to behave inconsistently with data (Bouskill 
et al., 2014; Zaehle et al., 2014). Needed are improvements in modeling the cycling of nitrogen (N) and phosphorus 
(P) and their interactions with ecosystem productivity and decomposition through limiting plant photosynthesis 
or microbial processing of SOM. Modeled and observed soil C stocks should be analyzed in the context of both 
empirical and model data to understand processes affecting both NPP and soil C turnover times.

Soil C turnover in models has traditionally been conceptualized as a spectrum of pools linearly decaying with 
different turnover rates, which are modified multiplicatively by moisture and temperature effects (Parton et al., 1988). 
However, recent studies suggest that soil C decomposition across all ecosystems is an emergent response resulting 
from the interactions between many biotic and abiotic factors, including availability or activity of microbes, minerals, 
plants, and inorganic chemicals (Schmidt et al., 2011). This new conceptualization may explain why existing ESMs 
under-predict the climate change effect on carbon turnover (Carvalhais et al., 2014; Koven et al., 2015). Many new 
modeling approaches are also being explored to explicitly address interactive and emergent factors. Notably, studies 
show that considering the microbial and environmental dynamics in models e.g., improves global distributions of 
soil C stocks (Wieder et al., 2013), explains the diverse temperature sensitivity of C decomposition (Tang and Riley, 
2015) and improves simulated respiratory response to soil moisture fluctuations (Grant et al., 2012a; Manzoni et al., 
2014, 2016). Also, most soil biogeochemical models have only simulated the biogeochemistry in topsoil, but models 
are developed to resolve the vertical distribution and transport of SOM and they show improved model performance 
in recreating observed radiocarbon ages or C stocks at high latitudes (Braakhekke et al., 2014; Koven et al., 2013; 
2015; Riley et al., 2014; Tang et al., 2013; He et al., 2016).

To date, model evaluations have focused primarily on whether models can reproduce observed time series or spatial 
patterns in observational data (e.g., soil C stocks). While such benchmarks provide initial insights into whether 
discrepancies exist, they offer limited insights into why models may or may not mimic observations. The next logical 
step is to break down the observed spatial and temporal patterns to identify key processes and environmental controls 
on model predictions. A model should be evaluated for what it was designed to simulate as opposed to what we 
wish it to simulate. For any given benchmarking activity, the targeted processes should be identified a priori and 
the empirical benchmarking dataset should be adapted accordingly. For instance, a model that does not include 
peatland formation should not be directly compared to datasets that include substantial stocks of peatland soil C. 
Other approaches include evaluating whether models can simulate ecosystem responses to disturbances, which could 
be either natural or manipulative. The emergent constraint approach is a non-traditional benchmarking method to 
evaluate and post-correct model performance (Hoffman et al., 2014), but its accuracy and mechanistic underpinning 
require further examination. Finally, to make the model–data benchmarking informative, benchmarking datasets 
should also include explanatory support data (metadata) and provide robust estimates of data uncertainties.

B.4.3 Observational Data, New Metrics, and Benchmarking Approaches

Despite its importance, observation-based estimates of the global soil C are highly uncertain. The estimates published 
between 1951 and 2011 (Scharlemann et al., 2014; median 1,460 Pg C, n = 27) have varied from 500 to 3,000 Pg 
C. With the recent release of the WISE 3.1 database (Batjes, 2016) the number was updated to 1,408 ± 154 Pg C 
to 1 m depth and 2,060 ± 217 Pg C to 2 m depth. The WISE database combines earlier products with climate maps 
and an updated soil profile dataset that integrates the global harmonized soil data with notable improvements at 
northern high-latitudes. At local to regional scales most modern soil inventories are based on digital soil mapping 
techniques where soil properties are predicted based on soil profile reference data in combination with environmental 
data. Hengl et al. (2014) first applied this technique at global scale and produced the SoilGrids 1 km dataset. 
Although digital soil mapping has many advantages when compared with other approaches, its product is still in early 
stages of development and needs further evaluation. Hengl et al. (2017) described the technical development and 
accuracy assessment of the most recent and improved version of the SoilGrids system at 250 m resolution, based on 
machine learning. Even with these recent advances, global soil C estimates still have large uncertainties, and regional 
discrepancies are high for wetland soils, tropical and northern peatland soils, and permafrost region soils. Broad-
scale characterizations of these soil types are still hampered by pedon data scarcity, access restrictions (licenses), and 
insufficient data on their spatial distributions. Therefore, there are substantial remaining challenges for the research 
community working with improving and harmonizing mapping of global scale soil properties (Batjes et al., 2017).

While the community has not decided whether to replace established multi-pool models with models based on 
emerging conceptualizations of transient environmental and microbial dynamics within ESMs, disparate types 
of models can be evaluated with some common metrics. Examples include benchmarking model-estimated soil 



63

C residence time with that from radiocarbon datasets and data–model experiments that target soil C responses 
to various environmental perturbations. Such approaches offer a way forward in comparing the performance of 
traditional and emerging models for a range of processes and across environmental gradients. Wieder et al. (2015a) 
present a framework for representing soil microbial processes in ESMs. However, formulating standard protocols for 
model parameters and output as well as common benchmarking approaches that are applicable across various model 
designs is a challenge that continues to provide opportunities for innovative ideas and cross-cutting discussions and 
collaborations. 

Several challenges remain for next generation of soil biogeochemistry models. To meet these challenges, both 
model development and creation of dedicated benchmarking datasets are needed. First, how realistic is model 
representation of microbial dynamics? Is, for example, the microbial substrate-use efficiency, microbial community 
population dynamics or microbial and enzyme turnover appropriately represented? Microbial community responses 
to soil warming and changes in moisture are of particular interest. New experiments, including C-isotope labeling 
techniques (Dijkstra et al., 2011), for example, will be helpful to constrain these processes. Second, how realistic is 
model representation of soil mineralogy impacts on C stabilization across wide environmental gradients? Observed 
correlations between soil mineralogy and C turnover (Torn et al., 1997; Doetterl et al., 2015) could emerge from 
mineral interactions with, for example, dissolved organic substrates (Mayes et al., 2012), extracellular enzymes 
(Quiquampoix et al., 2007), root exudates (Keiluweit et al., 2015), or soil aggregates (Nicolas et al., 2014). Datasets 
are needed to parameterize and evaluate the representation of aggregates and abiotic destabilization effects on soil C 
dynamics across the full gradient of environmental conditions. High-quality observational datasets of soil mineralogy 
and soil textures across broad geographical scales are presently lacking. Third, how realistic is model representation of 
SOM stabilization and microbial activity across gradients from aerobic to anaerobic conditions as well as from frozen 
to unfrozen states? In response to hydrology, soils continuously fluctuate between aerobic and anaerobic conditions, 
and the two conditions often coexist at different soil depths (e.g., Grant et al., 2012b). Partial freeze-thaw dynamics 
of the soil column occur in both seasonally frozen and permafrost soils. Empirical data to support a mechanistic 
parameterization and evaluation of models with comprehensive redox cycles and dynamic soil freezing are needed. 
Model approaches that look beyond empirical scaled temperature and moisture responses may provide new ways 
forward in modeling these complex relationships (Davidson et al., 2012). Useful benchmarks to validate such 
models could be provided by laboratory incubations of full intact soil cores under varying thermal and hydrological 
conditions. Fourth, how realistic is model representation of soil transport and turbation processes? This includes 
bioturbation, cryoturbation, and other physical transport mechanisms. Only limited data are available to benchmark 
model performance, and observed radiocarbon ages of different SOM fractions across diverse environments are 
needed. Fifth, how realistic is model representation of nutrient dynamics and competition by microbes, plants, 
and mineral surfaces? These processes also feedback to plants and alter an ecosystem’s capability to sequester 
atmospheric carbon. Many models that consider stoichiometric demand are limited to C:N dynamics, and increased 
understanding of C:P dynamics is desirable. Further, data availability limits mechanistic parameterization and the 
ability to assess models of nutrient competition (Tang and Riley, 2013; Zhu et al., 2016).

B.5 Surface Fluxes (Energy and Carbon) 
 A. Scott Denning and Daniel M. Ricciuto

B.5.1 Scientific Challenges and Opportunities for Model Evaluation

Surface fluxes of carbon and energy are a key input from land to atmosphere models, and observations of these 
variables have been used to benchmark carbon cycle, land surface, and Earth system models for several decades. 
Networks of surface flux observations such as the FLUXNET eddy covariance network have expanded rapidly over 
the last 25 years and have been used in numerous model intercomparisons and model–data comparison papers. Tools 
such as ILAMB can indicate when particular models may be agreeing with each other or with observations of surface 
fluxes, but, absent other benchmarks, cannot explain why they diverge in century-scale predictions. When different 
types of data are co-located, the benchmarks are even more powerful and should be given more weight. Intensively 
observed sites or regions, such as Critical Zone Observatories (CZOs), Long-Term Ecological Research (LTER) sites, 
or National Ecological Observatory Network (NEON) sites that include surface fluxes as part of a diverse set of 
measurements, may be candidates for a new subset of powerful “super-site” style benchmarks. Additionally, surface 
flux measurements in combination with experimental manipulations (e.g., warming experiments, rainfall exclusion, 
or CO2 additions) may provide powerful constraints on ecosystem responses to climate change.
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While eddy covariance measurements are critically important, their footprint (~1 km2) is still 2–4 orders of 
magnitude smaller than that of a typical Earth system model grid cell (~104 km2). Key process and driving variables 
of surface fluxes at these spatial scales may differ from those at the flux tower scale. It remains difficult to characterize 
soil, vegetation, and disturbance heterogeneity, and to estimate the effect of this heterogeneity on model predictions. 
“Bottom-up” approaches to upscaling use observations (e.g., FLUXNET) in combination with gridded driver datasets 
to estimate fluxes at regional scales. These already comprise a set of important ILAMB benchmarks, but more work 
remains to characterize associated uncertainties. Atmospheric inversion “top-down” models have progressed rapidly 
over the past two decades, increasing in resolution from continental scale to scales approaching that of Earth system 
model grid cells. While the global surface atmospheric CO2 concentration measurement network remains relatively 
sparse and atmospheric transport uncertainty contributes to high estimated flux uncertainty, targeted regional 
networks and new remote sensing capabilities are beginning to enable predictions of surface CO2 fluxes at higher 
accuracy and resolution. In the future, a combination of top-down and bottom-up techniques with data assimilation 
or model–data fusion approaches could produce integrated surface flux benchmarks that are more accurate and 
spatially relevant than individual approaches.

Specific Points and Recommendations

Measurements of surface exchanges of energy, water, carbon, and momentum at flux towers are uniquely valuable 
for evaluation of ESMs because these are precisely the quantities that must be provided by land-surface modules for 
successful coupling to the atmosphere. It is critical that ESMs continue to focus on getting the surface fluxes right, 
despite the aforementioned problems with heterogeneity and mismatched footprints. Benchmarking models against 
hundreds of surface flux records can help identify key model shortcomings and guide model development, but the 
value of these comparisons is greatest when the data are used to understand which processes matter at which spatial 
and temporal scales. Combining surface fluxes with other key benchmarks to understand their responses to changing 
climate conditions enhances mechanistic understanding of model deficiencies.

The mismatched footprints of flux towers and ESM grid cells have driven innovations in surface flux benchmarking. 
One approach involves model evaluation against suites of flux sites across gradients of climate drivers such as moisture 
or stand age. Upscaling from tower footprints has been done directly using field measurements and remote sensing 
to characterize spatial patterns and heterogeneity (e.g., Bigfoot Project: Cohen et al., 2003; Turner et al., 2003). 
Empirical upscaling of tower fluxes to produce global maps of surface fluxes by combining local observations with 
remote sensing and climate data is an especially promising direction for future model benchmarking (Luyssaert et al., 
2007; Beer et al., 2010; Jung et al., 2011). Another important approach involves comparing models to measurements 
at much larger spatial scales using natural integrators of mass balance such as hydrologic watersheds or atmospheric 
mixing. Atmospheric measurements of trace gases provide a strong constraint for surface fluxes over large areas, 
but quantitative benchmarking requires accurate calculation of the effects of atmospheric transport through formal 
optimization techniques collectively known as inverse modeling. These methods have been used for CO2 and other 
trace gases for decades, but have historically been limited by sparse CO2 measurement networks. Recent developments 
in greenhouse gas observations from space (e.g., GOSAT, OCO-2) have the potential to dramatically improve ESM 
benchmarking at larger scales.

Benchmarking based on diurnal, seasonal, and even interannual variations in the recent past does not fully test the 
ability of models to predict future fluxes in response to climate forcing outside the envelope of recent changes. Unlike 
hindcasts, ESM predictions on decadal and centennial timescales cannot be compared to observations of changes that 
have not happened yet! Instead, we rely on model intercomparisons such as C4MIP and CMIP5 to characterize the 
spread among models of the future. Intercomparisons provide a way to quantify uncertainty in production modeling, 
and classification of variations in ESM predictions relative to emergent constraints in hindcasts can help stratify 
models and provide guidance for model development (Hoffman et al., 2014).

B.5.2 New Metrics and Benchmarking Approaches

In addition to simple differences between models and observations, metrics should include separate evaluation 
of model bias, variance or RMSE, phases of diurnal and seasonal cycles, and spatial covariance. For mechanistic 
interpretation to propel model improvement, benchmarking should focus on characterizing functional relationships 
such as changes in surface fluxes with temperature and soil moisture anomalies. For ESMs to make credible 
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predictions, new benchmarks must quantify long-term responses to climate forcing, rather than just diurnal and 
seasonal behavior. While interannual variations are notoriously difficult to simulate accurately and very few flux tower 
records are long enough to characterize decadal variations, benchmarks that explicitly target these slower changes will 
be important in evaluating and improving decadal to century timescale ESM predictions.

B.5.3 Observational Data Needs

Surface fluxes of heat, water, carbon, and momentum are now routinely measured at more than 700 sites around the 
world, and flux data are available across an amazing breadth of climate and ecosystem types. Unfortunately, much of 
the data from these sites is difficult to obtain in a timely way. A number of national and regional networks contribute 
data to FLUXNET (http://fluxnet.fluxdata.org/), which performs high-level processing to fill in missing values and 
match flux data with other measurements, but flux records are often years behind real time. Moreover, updating of 
site records is uneven across the networks. These factors make development of benchmarks that relate flux anomalies 
to climate forcing or other data problematic. Combining flux data with remote sensing and other in situ observations 
(e.g., trace gas sensors or specialized phenocams) is possible, but is not done routinely.

Most flux towers have only operated for a few years, and only a handful have operated long enough to assess decadal 
changes in surface fluxes. To quantify responses of slower ecosystem processes, it will be critical to maintain the 
longest-running tower sites into the future, despite the cost and manpower challenges. The few 20-year records now 
available demonstrate the important roles of ecosystem succession and climate response. Predictive ESMs will be 
greatly enhanced if these long records can be captured in new benchmarks.

Integrated meta-analyses are required to enable evaluation of changes in surface fluxes from predictive models in 
response to forcing from climate, land use, and nutrient cycling. Combining flux records with other observations 
such as climate, remote sensing, land use, and disturbance histories provides the information modelers need to 
assess mechanisms for slowly changing fluxes. New syntheses can take advantage of ecosystem manipulations (e.g., 
Amazon throughfall exclusions, SPRUCE, and NGEE), leverage natural experiments (e.g., droughts, heat waves), 
and collect flux records across gradients in climate, land use, nutrient deposition, and stand age. Benchmarks 
using these synthetic analyses help indicate the sources of model discrepancies and lead to improved confidence in 
ESM predictions.

B.5.4 Model Development and Output Requirements

Current models include the calculation of albedo, partitioning of latent and sensible heat, transmittance of radiation 
to the ground, soil heat flux, and canopy temperature for some approximation of canopy heat capacity. Approaches to 
calculation of albedo and canopy radiation balance and heat storage vary widely, and evaluating how these different 
model frameworks calculate surface energy balance should be revisited in light of how second generation vegetation 
models now represent heterogeneity in plant canopies. In addition, ESM development is now addressing gaps in 
process representations that pertain to slower responses of ecosystems to changes in forcing, including ecosystem 
succession, nutrient cycling, and the effects of prolonged physiological stress. Plant mortality and replacement of 
plant functional types in response to climate change are critical processes that control ESM responses over decadal 
time scales, yet have typically not been included in ESMs.

B.6 Vegetation Dynamics 
 Rosie Fisher and Chonggang Xu

B.6.1 Scientific Challenges and Opportunities for Model Evaluation

In the context of this report, we define “vegetation dynamics” as the changes in ecosystem composition and 
structure—manifested in current ESMs as the distribution of plant functional types (PFTs)—in space, and of the 
processes leading to that distribution, including recruitment, succession, growth, mortality, and disturbance. In many 
LSMs, vegetation distribution is prescribed, and thus, vegetation dynamics metrics become a test of model behavior 
only when dynamic vegetation models (DVMs) make PFT distribution prognostic.
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Development of Vegetation Demographic Models

Most land surface models now contain some kind of vegetation dynamics model, typically a first generation model, 
including  Lund-Potsdam-Jena (LPJ)-derived models (in ORCHIDEE, CLM, CTEM), TRIFFID (in JULES), and 
the JSBACH-DGVM. The majority of CMIP models simulations do not actually include prognostic DVMs (they 
can typically be turned off and replaced with a static PFT distribution) because of challenges with increasing model 
degrees of freedom.

In first generation ESMs, the land surface is discretized into tiles, according to PFT, with each PFT represented 
by a single representative individual. The abstraction of ecosystems into this simplistic structure makes it difficult 
to simulate light competition, and, thus, exclusion or coexistence of different PFTs. In the last decade, second-
generation vegetation demographic models (VDMs) have emerged that capture light-competition driven coexistence 
and competition of PFTs through the representation of different tree sizes (e.g., cohorts or individuals) in the vertical 
canopy structure and successional dynamics through the representation of disturbance history. One of these (SEIB-
DGVM) is incorporated into an existing CMIP model, and development of several more VDMs is underway. VDMs 
allow comparison with many more potential data streams than first generation DVMs, and the sections below were 
written with this in mind.

Existing Large-scale Metrics for First Generation Vegetation Dynamics

In the first generation of ILAMB, the only vegetation dynamics metrics were for burned area. The GFED burned area 
product is used for comparison with models (Giglio et al., 2013). Hantson et al. (2016) reviewed the availability of 
benchmarking products related to fire in the context of the planned FireMIP experiment. They highlighted first the 
existence of four alternative burned area products (GFED3, L3JRC, MCD45A1, Fire_cci) and also the Global Fire 
Assimilation System biomass-burning fuel consumption product, which includes both fire and radiative power (Kaiser 
et al., 2012). Expansion of ILAMB to include these metrics would be beneficial to collaboration with FireMIP.

Most existing large-scale metrics of vegetation dynamics are derived from Earth observation measures of canopy 
greenness and algorithms that imply phenological type from seasonal cycles of canopy greenness (Lawrence et al.., 
2012). Further, canopy height metrics allow distinction between short stature and low stature vegetation (trees/
shrubs/grass). Both of these metrics can also be used to assess model projections of LAI and canopy height. Numerous 
alternative land cover maps exist (GLC2000, GlobCover, MODIS). For DVMs, it is traditional to compare model 
output with land cover maps generated from one or both of these products (Gotangco-Castillo et al., 2012). 
However, generation of land surface cover products (and their variation through time) is subject to uncertainty 
in both algorithm structure and PFT classification (Poulter et al., 2011). Integration of all such products into the 
ILAMB package would allow for characterization of the uncertainties across classifications.

Existing Plot-scale Metrics for Vegetation Dynamics

In the case of vegetation demography models, tree demography/forest inventory data at the site level have been used 
to compare with model simulations of recruitment, mortality, and canopy structure. Some early syntheses might be 
suitable for ILAMB integration, notably Forest Inventory and Analysis (FIA) program mortality rates gridded over 
the USA (Johnson, Xu, McDowell et al., in prep). There are numerous regional forest inventory datasets, but no 
comprehensive synthesis of these disparate products, meaning global-scale analyses are not possible at present.

B.6.2 Observational Data Needs

Observational data can be divided into two categories: (1) new data that is now available for use by first generation 
DVMs and (2) data that can be accessed by second generation (demographic) DVMs.
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Forest Inventory Data

A critical but challenging source of data for VDM comparisons is the network of national and regional scale forest 
inventory data. These include FIA (USA), ForestPlots, ForestGEO, and many other national inventories (e.g., Spain, 
Russia). Data can be used to quantify mortality rates by PFT or size class, equilibrium and transient stand structure 
(height distributions), and relations among all these and driver variables, plant properties, and changes through time 
(e.g., van Mantgem et al., 2009). The major challenges here are analysis of the complex raw data, which is routinely 
conducted for small-scale analyses, and comparison across networks, which is rarely undertaken. This is a long-
standing but important challenge (e.g., Purves and Pacala, 2008). Further challenges to the use of inventory plots are 
the typical absence of model drivers (meteorology) and auxiliary data (soil, plant traits) at individual sites, making 
direct comparison with models difficult, although this can potentially be overcome by concentrating on cross-network 
analyses and variable relationships, such as growth/mortality relationships through space and time.

Representation of Functional Diversity and Use of Trait Data

A further development in the LSM community is a proliferation of methods that seek to better capture diversity of 
plant function via the increasing use of plant functional trait data. These approaches include (1) using trait maps or 
trait-environment relationships to constrain LSMs (where trait information is an input) (Verheijen et al., 2013; Reich 
et al., 2014); (2) using optimality models to predict plant traits under given conditions (Xu et al., 2012; Thomas and 
Williams, 2014), and (3) trait filtering, where plants of different functional types compete within a demographic 
model (Scheiter et al., 2013; Fisher et al., 2015). For these latter two methods, geographical distribution of plant 
traits (which is increasingly available from remote sensing data) might be considered a metric or benchmark. Thanks 
to recent, very large databases of plant traits (Kattge et al., 2011), there has been much progress recently in identifying 
relationships between plant leaf traits (Wright et al., 2004; Reich et al., 2014). Depending on the choice of model, 
these data can either be used as input (to trait maps and climate-environment relations, or trait-trade off relationships) 
or as validation of the geographical distribution of traits predicted by optimal or trait filtering approaches. Despite the 
abundance of data for the most easily measured traits, such databases are only sparsely populated for many functional 
variables, in particular for belowground plant properties and for more physiologically complex processes (plant 
hydraulics information, tissue allocation, carbohydrate storage).

Remote Sensing Products

Remote-sensing based disturbance maps could be useful for benchmarking severe mortality events (e.g., fire and 
insects; Hansen et al., 2013). Such products are more useful for benchmarking if they attribute the disturbance to 
different causes of death (fire, deforestation, drought stress, insects/disease). Dynamics of vegetation heights based on 
LiDAR sensors could be useful to detect the disturbances too. With a demography size-structured model, however, 
linking height retrievals to model size-class representations introduces elements of uncertainty, particularly if retrievals 
are only available for the tallest trees. be able to provide the tallest tree info? This is particularly true for new global 
LiDAR products such as Global Ecosystem Dynamics Investigation (GEDI). Finally, the remote-sensing based 
functional relationship between traits and vegetation dynamics (e.g., trait distribution vs. mortality rates) could be 
useful for the third generation of vegetation models. 

Paleo and Tree Ring Data

Forest inventory data has time scale limitations. Thus, it would be beneficial to use pollen records to indicate past 
vegetation distributions (e.g., PalEON for North America; http://www3.nd.edu/~paleolab/paleonproject/). It 
would also be useful to compile the tree ring data across the world for the prediction of tree diameter growth under 
past climate conditions.
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Variable-variable Relationships 

Thurner et al. (2016) generated a global product of the plant productivity divided by the estimated carbon 
stocks. The result is an estimate of carbon residence time, which, although not precisely a metric of mortality, is 
comparable to the identical model metric and can potentially be used not just for DVMs but also for static vegetation 
distribution models.

B.6.3 New Metrics and Benchmarking Approaches

In terms of the metrics of benchmarking, it would be beneficial to use the traditional bias and RMSE as score 
metrics; however, metrics related to the successional trajectories (e.g., basal area and density change through time) 
with different types of disturbances could be useful to constrain the overall behavior of models. Furthermore, for the 
demographic type of DVMs, it would ideal to have metrics on the distribution of size and height on the same grid 
cell, given that it is important to correctly simulate both the mean and distribution to capture the vegetation dynamic 
under future novel climate conditions.
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Appendix C. 
Metrics for Integrating  
and Cross-cutting Themes
C.1 Process-specific Experiments 
 Mathew Williams and Jianyang Xia
In this section we discuss how process-specific experiments—that is detailed lab or field based studies—can provide 
critical parameters or insights into improved model structure.

The key scientific priority is selecting a group of sites from FLUXNET that span major biomes to serve as testbeds 
for ILAMB. Each of these sites should have associated data provided (e.g., met forcing, soil texture, land use history, 
plant traits) to allow model runs over specified time periods. Each site would have a series of independent datasets 
(e.g., net fluxes, biometrics and experimental data), allowing a careful diagnosis of model process representation. 
Below we set out the more detailed requirements and activities.

C.1.1 Scientific Challenges and Opportunities for Model Evaluation

It has been widely suggested that Earth system models should be made more robust by improving their structures to 
represent more real world processes (Knutti and Sedlacek, 2013; Luo et al., 2016). Given the enormous complexity of 
Earth system processes, it is still challenging to (1) specify which processes are more critical than others in regulating 
Earth system dynamics, such as climate change; and (2) evaluate representation of processes that have been widely 
incorporated but diversely parameterized in different models. One promising approach to solve this challenge is using 
process-specific experiments, which can evaluate and improve the model representation of a specific key process with 
observations. In this section, we identify a range of key processes where current models are highly parameterized or 
have major structural uncertainties. This identification then allows targeted links to process-specific experiments for 
tackling knowledge gaps in the following areas:

» Decomposition: Coupling to plant process, particularly priming through microbial dynamics

» Nitrogen cycling: Organic uptake, fixation largely unmeasured, not included in models, but likely to be critical

» Autotrophic respiration: Fundamental controls are poorly known, climate sensitivity is a major question

» Fluorescence: How can these data, soon to be available from space, be used to evaluate canopy processes? 

» Phenological sensitivity to climate: The model response of plant canopies to changes in precipitation, CO2, and 
temperature lacks strong foundations

» Plant trait correlations and trade-offs: Trait data are more available, but the trade-offs between traits must be 
better incorporated into models.

C.1.2 New Metrics and Benchmarking Approaches

Experimental approaches for addressing the key process uncertainties listed above involve using models to simulate 
processes at selected eddy flux sites, so that direct comparison to local data for process diagnostics are possible. This 
requirement means that the necessary drivers for all selected sites must be synthesized and distributed.

» Decomposition: Priming studies using varied litter quality to monitor microbial responses, time series of soil 
respiration (trenching experiments would allow more direct monitoring of heterotrophic respiration). Evaluate 
modeling of decomposition dynamics, climate sensitivity, and litter quality sensitivity.
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» Nitrogen cycling: C:N ratio for all pools, 15N tracer studies to quantify uptake, allocation, and turnover. 
Evaluate modeling of N pools and dynamics.

» Autotrophic respiration: Plant tissue respiration measurements, links to whole-plant economy, C isotope tracer 
experiments. Evaluate capacity of models to distinguish between growth and maintenance respiration for various 
plant pools, and their seasonal patterns. 

» Fluorescence: This quantity needs to be co-observed with eddy flux data to allow direct relations to gas exchange 
to be evaluated. There are issues with representativeness when comparing site to satellite data. Evaluate leaf level 
process representation in models.

» Phenological sensitivity to climate: Models could usefully provide output of leaf out date and senescence date 
that would be comparable to remote sensing indices. Below-ground phenology is a major uncertainty, so rhizotron 
data would be valuable. Information on non-structural carbohydrate can inform on plant allocation potential. 
Evaluate phenological timing against local data.

» Plant-trait correlations and trade-offs: Use local trait data to calibrate and evaluate models.

C.1.3 Experimental/Observational Data Needs

Field experimentation is a useful approach to explore new mechanisms underlying Earth system changes (Medlyn et 
al., 2015; 2016). However, there are challenges to connecting experimental data to models due to scale mismatches 
and gaps in records. Hence the need for carefully constructed driver and evaluation datasets at selected sites for 
developing diagnostics of model process representation. There are clear areas for novel experimental focus, particularly 
around isotopic tracers and fluorescence.

Gaps in Current Data Availability

There are difficulties in accessing experimental data in forms of value for model calibration and evaluation. Likewise, 
climate forcing for experimental data are often unavailable. The measurements are usually non-consecutive, and only 
a few variables or processes, e.g., soil respiration, are measured with standardized tools among different sites. Isotopic 
data remain relatively rare, but offer opportunities for tracing flows of C and N, allocation and residence times 
(Trumbore, 2006).

New in situ or Remote Sensing Measurement Needs

In situ experiments should focus on isotope tracer studies that quantify the residence time and pathways for N and 
C in ecosystems. Leaf and canopy scale studies of fluorescence are needed to inform use of satellite data (Guanter 
et al., 2014; Yang et al., 2015). Measurement of non-structural carbohydrate can inform on how plants invest and 
hedge against risk. It is highly valuable to have in situ remote sensing data over instrument sites, for comparison with 
satellite observations. Drone based sensors now make it possible to record similar data to that collected by satellite 
sensors, and thereby to determine atmospheric, scale, and spatial location errors between platforms.

Spatial and Temporal Extent and Resolution Requirements

There is a need for detailed in situ evaluations of model processes to test and parameterize models consistently; this 
means being able to isolate specific model processes so their decoupled sensitivity to particular forcing (experiments) 
can be evaluated and calibrated. Temporal requirements are closely related to residence times of carbon pools. Data 
extending over years are critical for understanding dynamics of the long-lived soil and wood pools. Weekly data are 
needed to track key phenological events. Hourly data provide insights into leaf level processes and sensitivity. We 
note significant data gaps in tropical ecosystems (Schimel et al., 2015) leading to major unknowns in the C cycle of 
these biomes.
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Integrating Extant Meta-analyses into Benchmarking Approaches

Meta-analyses of field experiments results have been recently used for benchmarking terrestrial ecosystem models 
(e.g., Piao et al., 2013). Plant trait databases are growing and providing important data on plant traits (Kattge et al., 
2011). Their focus is mostly on leaf traits, particularly structural traits. These databases will become more valuable 
as they include broader plant traits, and functional traits (e.g., respiration determinants, carboxylation rates). We 
particularly need to understand trait trade-offs, and use these to guide model parameterisation and structural 
improvements. We need to be able to simply characterize response patterns of different C and N processes for 
benchmarking model response functions.

Synthesis Activities Needs and Approaches

Exploration of full economic modelling for C allocation and C-N linkages provides a means to introduce optimality 
constraints on biological processes consistent with competitive interactions (Thomas and Williams, 2014). Effective 
modeling of plant-microbe-soil interactions, addressing priming, N fixation, exudates among other processes 
(Wieder et al., 2013), requires a concerted experimental effort, and particularly the use of isotopic tracers to unravel 
belowground processes.

C.1.4 Model Development and Output Requirements

For model development we require testbeds for calibration and evaluation of submodels at site scale, allowing 
simple connections between model inputs/outputs and site data. We need to evaluate plant trait correlations to 
determine process trade-offs (e.g., wood density versus hydraulic resilience). There is a risk that model development 
adds parameters and complexity, but thereby does not reduce model error and bias. This risk can be overcome by 
consistently testing simple models against data, and determination of the information content provided by more 
complex parameterizations (Li et al., 2014).

For output requirements, we need residence times for all pools, allocation and turnover of foliage, microbial 
pool dynamics, respiration of all living pools, trait correlations, N dynamics (including biological fixation). The 
biogeochemical data can then be used to evaluate model dynamics across pools and timescales (Thomas et al., 2013).

C.2 Metrics From Extreme Events 
 Hyungjun Kim and Maoyi Huang

C.2.1 Scientific challenges and opportunities for model evaluation

In the context of ILAMB, we define extreme events as the terrestrial and societal impacts (e.g., floods, streamflow and 
soil moisture drought, vegetation dieback, and fire) of weather and climate extremes (WCEs), and their feedbacks 
to the atmosphere. The WCEs are estimated as the occurrence of a value of a weather or climate variable above 
(or below) a threshold value near the upper (or lower) ends (“tails”) of the range of observed values of the variable 
(Seneviratne et al., 2012). Also, WCEs are identified as single and compound events. The latter occurs when (1) two 
or more extreme events occur simultaneously or successively, (2) combinations of extreme events lead to conditions 
that amplify the impact of the events, or (3) combinations of events that are not themselves extremes but lead 
to an extreme event or impact when combined. For example, floods most likely occur when heavy precipitation 
falls over saturated soils, so that it is desirable to analyze precipitation and soil moisture extremes simultaneously. 
One special case of compound events is associated with feedbacks within the climate system such as the possible 
mutual enhancement of droughts and heat waves in transitional regions between dry and wet climates that can be 
attributed to the interactions among soil moisture, surface energy budget partitioning, and near-surface temperature 
(Seneviratne et al., 2010).

Infrequent extreme events may play a particularly important role in structuring terrestrial ecosystems, for example 
in controlling severe fires and contributing to drought-related vegetation mortality events (Figure C.2.1). Thus, it 
is necessary to include these long-term effects and their role in governing vegetation dynamics. Current models, 
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particularly those that do not have a dynamic vegetation component, only represent short-term responses to WCEs, 
such as depressed growth during the period of the WCE. However, datasets to benchmark these long-term ecosystem 
responses to WCEs are sparse, and the framework to test ecosystem model responses to WCEs is not well developed.

Figure C.2.1. Processes and feedbacks triggered by extreme climate events, including droughts and heatwaves, 
heavy storms, heavy precipitation, and extreme frost. Solid arrows show direct impacts; dashed arrows show indirect 
impacts. The relative importance of the impact relationship is shown by arrow width (broader lines indicate stronger 
feedbacks). Adopted from Reichstein et al. (2013).

To distinguish causal processes of extremes and to evaluate how they are well represented in a model, we suggest a 
logical framework to categorize them into different spatiotemporal scales and scopes of their footprints and impacts, 
and list examples which have relatively large uncertainties or are missing representations in current ESMs.

A. Climate scale features: Macro-scale features having long persistence (> seasonal) and large horizontal length scale 
(> 2,000 km), such as the spatial distribution and intensity of SST anomalies (e.g., El Niño and other climate 
modes), locations of ITCZ on meridional migrations, intensity of Hadley circulation, and latitudinal temperature 
gradient 

B. Synoptic and mesoscale features: Persistence up to seasonal time scale and continental scale in the spatial domain, 
such as monsoons, tropical/extratropical cyclones, frontal systems, and sand/dust storm, as well as their impacts, 
such as excessive precipitation (i.e., meteorological drought) and heat/cold waves

C. Basin-scale land processes: Processes spanning up to seasonal or sub-seasonal scale such as excessive deficits and 
surpluses of water (e.g., flood), dry (i.e., hydrological and ecological droughts)/wet spells, extreme sea level, 
cryosphere- and ecosystem-related impacts (snow and snowmelt, fire, vegetation dieback), and landslides 

D. Socioeconomic impacts: Processes which are directly related with human-society, such as inundation and crop 
failure (i.e., agricultural drought)
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C.2.2 New Metrics and Benchmarking Approaches and Observational  
 Data Needs

Considering the potential objects listed above to be benchmarked, we propose several metrics on WCEs below:

A. ITCZ displacement: Meridional distance of ESM simulated ITCZ location from atmospheric reanalysis datasets 
or satellite observations (e.g., QuikSCAT). Location of the ITCZ is defined as places where the temporal mean of 
the meridional component of surface wind (v) is zero.

B. Zonal shift of Walker circulation: Zonal displacement from ascending/descending kernel locations of atmospheric 
reanalysis datasets. Convergence and divergence of near surface (e.g, 950 mb) and high atmosphere (e.g., 300 mb) 
and 500 mb pressure velocity will be used to 
identify the kernels. 

C. Reproducibility of weather systems: Skills of 
ESM representations of weather systems in 
terms of geographical location, intensity, and 
duration. Objectively detected weather systems 
(Utsumi et al., 2014) generated by ESM 
will be evaluated through comparison with  
observations (e.g., best track records for tropical 
cyclones; Utsumi et al., in revision; Figure 
C.2.2) and/or objective detections based on 
atmospheric reanalysis datasets.

D. Hydroclimatic intensity: Giorgi et al. (2011) 
suggested an index to estimate the intensity 
of hydroclimatic cycles as a ratio of mean 
precipitation intensity and mean dry spell 
length. ESM-reproduced precipitation intensity 
and temporal variability will be validated by using 
an observational precipitation-based index for each model gridcell.

E. Flood inundation extent and duration: ESM calculated inundated area will be compared with satellite-based 
surface water extent (Prigent et al., 2007). ESMs without the inundation process can utilize an off-line method 
using a standalone river model (e.g., CaMa-Flood; Yamazaki et al., 2011; Figure C.2.3) to validate their runoff 
generation. The anomaly of water storage combined with the other components (e.g., soil moisture) can be 
compared with the terrestrial water storage anomaly monitored by the GRACE satellite (Kim et al., 2009;  
Figure C.2.4).

Figure C.2.2. Benchmarking for weather system reproducibility 
of CMIP5 models.

Figure C.2.3. Comparison of flood inundation extent over Amazon by CaMa-Flood (left) and satellite remote sensing 
(right).
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F. Cumulative rainfall deficit: Maeda et al. (2015) suggested combining GRACE observations with in situ river 
discharge data to estimate water storage deficit on a basin-scale. The deficit reflects a cumulative amount of 
precipitation needed to satisfy evapotranspiration requirements through consecutive months (Figure C.2.5).  
A combination of ESM-simulated precipitation and evapotranspiration will be compared to benchmark how  
the model properly represents the intensity and the duration of dry spells.

Figure C.2.4. (a) Comparison of seasonal cycles of observed GRDC discharge (black solid line), discharge routed by  
the Total Runoff Integrating Pathways (TRIP) model (red solid line), and runoff without routing (gray dashed line).  
(b) Comparison of seasonal cycles of GRACE TWSA (black solid line), simulated TWSA with river storage (red solid  
line), simulated TWSA without river storage (gray dashed line), and the major water storage components in TWS.  
Gray crosses, green circles, and blue triangles represent snow water, soil moisture, and river storage, respectively.  
(c) Inter-annual variations of relative TWS: GRACE observation (black dot), and the TWS simulations with river  
storage (red solid line) and without river storage (gray dashed line). Each area shaded by blue, gray, and green 
indicates the portion of river storage, snow water, and soil moisture in the simulated relative TWS, respectively.

Figure C.2.5. Cumulative Rainfall Deficit and annual rainfall anomalies in four watersheds over the Amazon basin.
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G. Event oriented benchmarks: Compile standard dataset libraries for well-studied extreme events for comprehensive 
benchmarking through multiple state and flux variables between onset and offset of the extremes. A 2003 
heatwave in Europe, California drought, Alaska fire events, 2010 Russian drought, and 2011 flood in Australia 
would be candidates. Crucial to the use of naturally-occurring WCEs as model benchmarks is to compile both the 
short-term water, energy, and carbon responses of the coupled ocean–land–atmosphere system during the event, 
as well as the longer-term responses of ecosystems and anthropogenic systems to the extreme events, including 
vegetation mortality responses to drought and heat events, and soil and vegetation carbon losses during fires. 
Ideally, such observations can be collected in cases where some medium-term predictability allows installation of 
dense observing systems prior to or during the WCE, for example in examining ENSO-related drought events 
which may allow several months of predictability about where droughts are likely to occur, which has been a 
strategy of the NGEE Tropics project for the 2015–2016 El Niño event. 

H. Experimentally-induced WCEs: Numerous rain throughfall exclusion experiments have been conducted in 
terrestrial ecosystems to simulate drought events, and these are a useful benchmark of terrestrial models (e.g., 
Fisher et al., 2007; Powell et al., 2013). These experiments, and other experimentally-induced WCEs, allow 
for targeted measurement campaigns and collection of key variables required for testing models, which may 
not be possible given the opportunistic nature of observational campaigns around naturally-occurring WCEs. 
Synthesizing these experiments and developing clear model protocols for comparison is a key requirement for 
better use of these experiments as model benchmarks.

C.3 Design of New Perturbation Experiments 
 Martin De Kauwe and Ankur Desai

Breakout Meeting attendees: James Simkins, Shawn Serbin, Rosie Fisher, Elena Shevliakova, 
Ben Bond-Lamberty, Dan Ricciuto, Nick Smith, Kaoru Tachiiri

C.3.1 Scientific Challenges and Opportunities for Model Evaluation

Perturbation experiments directly manipulate ecosystems and by measuring observed responses against a control, 
they provide direct tests of ecosystem responses to land use and global change (Bonan, 2014). Manipulation 
experiments short-circuit long-term monitoring experiments and directly test the global changes that ESMs are 
expected to predict. Despite this, these experiments have been under-used in evaluating ESMs predictions. There 
are a number of reasons for this disconnect: (i) there are often scale mismatches between the (coarse) model and 
the experiment; (ii) datasets from experiments are not in a format which can readily be used by modellers; (iii) the 
necessary meteorological forcing for the experiment may not exist, or may have gaps; (iii) there are data-sharing 
issues; and (iv) the modelling and experimentalist communities are not sufficiently engaged. Furthermore, attempts to 
model experiments have traditionally taken place after the conclusion of the experiment (but see Luo, 2001; Parton 
et al., 2007; Medlyn et al., 2016), which often results in missed opportunities to take measurements that could have 
distinguished between competing model hypotheses (Dietze et al., 2014).

Field manipulations encompass a broad range of experiments including: nutrient addition/removal, species transplant 
(addition/removal), precipitation and temperature manipulation, rainfall exclusion, manipulation of atmospheric 
chemistry and greenhouse gases. Arguably the most well known example of which were the US Department of  
Energy Free-Air Carbon Dioxide Enrichment (FACE) studies, carried out between ~1996–2010 (Figure C.3.1).  
For logistical reasons many of these experiments often manipulate a single factor, although a smaller collection of 
multi-factorial experiments do exist (Dukes et al., 2005; Pendall et al., 2013; see Dieleman et al., 2012 for a review). 
Such experiments need to be conducted outside of mid-latitude biomes, and the Amazon FACE experiment  
(https://amazonface.org/; Grossman, 2016) is expected to provide valuable information about photosynthetic 
potential of tropical forests. Ongoing and new studies that look at multiple factors in critical ecosystems such as 
peatland warming and drying (SPRUCE; http://mnspruce.ornl.gov/; Witze, 2015; Figure C.3.2), drought,  
nutrient addition, active warming, including the Tropical Responses to Altered Climate Experiment (TRACE;  
http://forestwarming.org/; Cavaleri et al., 2015; Figure C.3.3), or passive warming, including the International 
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Tundra Experiment (ITEX; http://ibis.geog.ubc.ca/itex/) and the Zero Power Warming (ZPW) experiment  
(https://www.bnl.gov/envsci/test/zpw-liveupdates.php) have high potential for constraining ecosystem model 
responses in ways that are difficult to do with traditional benchmarks from long-term observations. There are also 
a new generation of FACE experiments focused on mature ecosystems, which cover a wider range of biomes and 
climatic space than the first generation did (Norby et al., 2016).

Figure C.3.1. Four rings at the Oak Ridge National Laboratory FACE experiment.

Figure C.3.2. The SPRUCE experiment consists of 10 octagonal enclosures,  
each 12 meters across and 8 meters high, in a peat bog in Northern  
Minnesota, USA. Atmospheric CO2 levels and temperature can be  
manipulated within the enclosures to test out the effects of future climates on peatland ecosystems.
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C.3.2  New Metrics and 
Benchmarking Approaches

Most benchmarking approaches 
for perturbation studies do not 
differ significantly from traditional 
benchmarking, though the focus is on 
comparing model sensitivity to response 
of the perturbation over the control, for 
the target variable and driver change. To 
date, most comparisons have not exploited 
this approach. For example, model 
comparisons to FACE data have often 
focused on capturing the mean net primary 
productivity (NPP) response over the 
experiment period (Hickler et al., 2008). 
This is problematic because models can be 
tuned to get the right answer, but arrive 
at it for the wrong reasons. Alternatively 

the FACE model–data synthesis (De Kauwe et al., 2013; 2014; Walker et al., 2014; Zaehle et al. 2014) used the 
experimental data to understanding how and why models differed from each other and the observed responses, 
providing a clear roadmap to model improvement (Medlyn et al., 2015).

There are a number of existing experiments that we identified which as yet have been under-exploited for model 
benchmarking. These include: (i) warming; (ii) drought/rainfall exclusion (see Smith et al., 2014 for a review); (iii) 
competition changes (species composition); and (iv) acclimation responses. It is likely that additional funding will be 
required to synthesis past experiments to define big picture responses we feel models should be capturing.

Due to the small scale of manipulation experiments, it may be that the best route for benchmarking ESMs remains 
in targeted offline model intercomparison projects. It may also be possible to use these results as a set of response 
surfaces to benchmark future climate model runs in an emergent constraint framework (Hoffman et al., 2014), by 
estimating processes such as tissue turnover rates, or recovery times from disturbance. Nevertheless, now that many 
of these experiments have been completed there is scope to define a series of cross-site responses that could be used 
to define a benchmark for ESMs (Walker et al., 2015). One successful example of this approach was the use of data 
across 301 N-fertilization experiments to confront global predictions from two land surface schemes (Thomas et al., 
2013). Another example was the use of a long-term throughfall exclusion experiment in the Amazon to probe how 
well models captured responses during drought (Powell et al., 2013).

C.3.3 Observational Data Needs

While perturbation experiments often collect extensive field-level data, much of these data are difficult to acquire and 
integrate. Many data, such as those on leaf-level parameters, NPP are stored in diverse formats (e.g., xls vs. csv vs. 
netCDF), often not open-source , rarely directly machine-readable and on archives that may require permissions to 
access. Metadata and protocol documents may not specify treatment details in sufficient detail to properly replicate in 
a model. For example, exactly how much biomass was removed and what was done with this biomass: was it removed 
from the site, or deposited as litter; the distinction matters for models wishing to replicated experiments. There 
remains an outstanding need to provide funds to experiments so that the datasets produced are open, self-describing 
and useable by outside groups (e.g., Bond-Lamberty et al., 2016a). Even in experiments which have readily shared 
datasets (e.g., FACE), often the experiments do so via site-specific websites and these datasets often lag datasets used 
in recent publications. There is a clear need for central archival repositories for manipulation experiments. This would 
not only help in distributing datasets, but would most likely also raise awareness to the wider community.

Model–data synthesis initiated at the start of experiments (Medlyn et al., 2016; Norby et al., 2016) is an excellent 
means to identify and solve many of these potential issues before the experiment begins. These synthesis activities 
can also lead to the development of experiment modelling protocol which direct other modelling groups how to set 
models up for individual experiments (Walker et al., 2014; Medlyn et al., 2016).

Figure C.3.1. Four rings at the Oak Ridge National Laboratory FACE 
experiment.
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C.3.4 Model Development and Output Requirements

Several challenges exist in attempting to apply models to perturbation experiments. Many ESMs operate at relatively 
large scales (>50 km2), whilst experimental plots may be relatively small in spatial size (1–100 m2). In particular, for 
the core global change processes of CO2 fertilization, drought, and nitrogen addition, mechanisms are limited in 
variety. Thus parameterizing a model or scoring performance against these experiments when mechanisms are not 
nuanced enough to address the main responses remains a challenge. It is important for benchmarking to consider 
multiple aspects of a response (e.g., biomass growth, allocation changes, water use, mortality rates) to reliably score 
a model against such an experiment. Otherwise a model may perform well in one area, but without the proper 
mechanisms, incorrectly capture other dynamics.

Models need to be able to run control and perturbation studies and produce output on the difference between these 
two across multiple types of variables that are measured on the ground, including soil respiration, NPP, transpiration, 
allocation, and root growth. A specific challenge may be properly specifying the actual treatment. While some like 
CO2 fertilization or N deposition are straightforward, others like soil warming or biomass removal may require model 
modification to properly simulate the experimental protocol, if it affects the response. Properly specifying initial 
conditions and species specific parameters is also critical to properly simulate plot-level and ecosystem-scale studies.

Benchmarking applications need to consider comparing not just time and space overlapping state variables, but also 
comparisons of responses grouped by ecosystem function or structure. The benchmarking community should work 
jointly with experimentalists to identify a set of shared priorities for evaluation and experiments best designed for 
addressing those.

C.4 High Latitude Processes 
 Charlie Koven, Kevin Schaefer, and Umakant Mishra

C.4.1 Scientific Challenges and Opportunities for Model Evaluation

Northern high latitude soils contain about twice as much carbon as in the atmosphere (Hugelius et al., 2014). This 
enormous carbon pool is vulnerable to accelerated losses through mobilization and decomposition under anticipated 
warming scenarios, with potentially large global carbon and climate impacts (Koven et al., 2011; Schaefer et al., 2011; 
Schuur et al., 2015). Many processes control the response of this carbon pool to changing environmental conditions. 
For example, active-layer dynamics, thermokarst formation, thermal erosion, shrub expansion, fire disturbance, soil 
moisture heterogeneity, and the overall rate of wetting and drying that will accompany warming. These processes 
impact the vulnerability of permafrost carbon pool through different mechanisms. Active layer thickness determines 
the volume of SOC available for microbial decomposition, and has been projected to go deeper under future 
warming. Thermokarst formation on the permafrost landscape enhances methane emissions to the atmosphere. 
Thermal erosion due to permafrost collapse can increase microbial decomposition and translocate large amounts 
of soil carbon to river networks. Increased wildfire occurrence has been projected under future warming scenarios; 
wildfires can directly combust the carbon in the surface organic layers and may alter the soil moisture dynamics. 
Similarly, many studies projected shrub expansion northwards under future warming, which can further destabilize 
the existing permafrost.

The CMIP5 generation of models were still deficient with respect to their ability to simulate these processes. None 
of these models included permafrost carbon pools, many had poor representation of crucial physical processes 
such as snow insulation of organic soil physical properties (Slater and Lawrence, 2013; Koven et al., 2013), and 
none included a careful treatment of subgrid-scale heterogeneity in landscapes driven by polygonal features. Since 
then, research on modeling high latitude dynamics and creating observational benchmarks for these models has 
resulted in significant progress in the field. Some ESMs, including CESM and ACME, now represent permafrost 
carbon and nutrient cycle processes (Koven et al., 2015), while others have focused on dynamic organic layers (Yi 
et al., 2009), or high-latitude-specific vegetation dynamics (Euskirchen et al., 2009). A MIP led by the Permafrost 
Carbon Network (PCN) compared different representations of the high latitude system to identify the effects of 
different structural representations on model predictions (McGuire et al., 2016). Activities like PCN have focused on 
synthesizing existing datasets on soil carbon stocks (Hugelius et al., 2014; Harden et al., 2012); permafrost carbon 
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decomposability under oxic, anoxic, and frozen conditions (Schädel et al., 2014, 2016; Schaefer et al., 2016); and 
appropriate benchmarks for testing the physical dynamics of the coupled atmosphere-snow-soil system (Slater et 
al., submitted). DOE’s NGEE Arctic project has focused on understanding the heterogeneity of polygonal tundra 
ecosystems, developing approaches to represent that heterogeneity in ESMs, and creating benchmarks for testing land 
models to reduce uncertainties of permafrost-affected ecosystems under a changing climate.

C.4.2 New Metrics and Benchmarking Approaches

In addition to assembling key datasets to benchmark physical, vegetation, and biogeochemical predictions of land 
models, it is crucial to identify the relationships between these variables in order to test whether model predictions 
of these relationships are accurate. While this is true everywhere, it is particularly the case at high latitudes because 
the climate gradients are especially steep and the heterogeneity of model-generated and reanalysis climates in the 
region is very high. For example, active layer thickness is a highly emergent quantity that results from the complex 
interplay between soil properties, snow dynamics, local climate, and fine-scale hydrologic variation; what is needed 
to benchmark models is not just observations of active layer thickness, but how measured active layers vary across 
gradients of these underlying driving variables, in order to diagnose specific model processes that are contributing to 
biases relative to observations. Thus, where possible, data from observational networks should be combined, and the 
types of observations made at existing networks should be expanded to best utilize observations focused on different 
aspects of the terrestrial system.

C.4.3 Observational Data Needs

One can break down the key observational needs into three main groups: vegetation, soil biogeochemistry, and 
the physical system. Each of these requires a much more detailed treatment and testing than was possible with the 
CMIP5 generation of models. For many of these, data exists and needs to be synthesized and developed into metrics, 
whereas for others the data must be collected.

Table C.4.1. Observational requirements for benchmarking of high-latitude processes.

 Domain Status Variables

Vegetation Data exists and is being used for 
benchmarking

LAI, Baseline PFT maps, Productivity

Data exists but must be synthesized and/or 
used for benchmarks

Biomass, non-vascular plant dynamics, fire 
disturbance frequency

Data does not exist Large-scale changes to vegetation 
distributions 

Soil Biogeochemistry Data exists and is being used for 
benchmarking

Soil carbon distributions; ecosystem 
responses to nutrient fertilization; 

Site-level CH4 fluxes

Data exists but must be synthesized and/or 
used for benchmarks

Oxic, anoxic, and frozen soil respiration 
rates, ecosystem warming experiments; 
extreme scarcity of synthesized soil carbon 
observations from Siberia

Data does not exist Pan-arctic organic layer thickness maps

Physical Snow–soil–
hydrologic system

Data exists and is being used for 
benchmarking

Snow cover extent, site-level soil 
temperatures, site-level hydrology, basin-
scale streamflow, gravity-based mass 
changes, site-scale ALT

Data exists but must be synthesized and/or 
used for benchmarks

Large-scale soil moisture, Large-scale snow 
thickness, SWE

Data does not exist Large-scale maps of ALT, Changes to 
permafrost extent 
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C.4.4 Model Development and Output Requirements

The ESM community has made substantial progress since CMIP5 in representing ESM structures of key systems that 
govern climate feedbacks from high latitude ecosystems. These include: permafrost physical state, exchange of energy 
and mass between the land and atmosphere in high latitudes, permafrost biogeochemical dynamics, dynamic organic 
soil layers, and vegetation dynamics across the tundra–boreal forest ecotone. However, these have been done primarily 
one at a time in different models with no coupled ESMs that include a high level of sophistication in all aspects of 
the high latitude system. Furthermore, some aspects of the high latitude system remain poorly resolved in models, in 
particular the complex hydrology and associated fine-scale heterogeneity that exists at high latitudes.

Approaches to better sample models to enable benchmarking are also critically required. CMIP5 protocols were 
able to benchmark soil thermal dynamics, but only poorly represented soil hydrological dynamics, for example, in 
predictions of unfrozen moisture content or detailed snowpack information, and had very little information on soil 
biogeochemical dynamics. CMIP6 protocols request more detailed output variables across these domains, including 
vertically-resolved carbon stocks, nutrient dynamics, and more finely-resolved thermal and hydrological variables 
(Jones et al., 2016; van den Hurk et al., 2016), allowing a more effective and systematic benchmarking capability 
for ESMs.

C.5 Tropical Processes 
 Nathan G. McDowell, Paul Moorcroft, and Charles D. Koven

C.5.1 Scientific Challenges and Opportunities for Model Evaluation

Tropical ecosystems present many processes that overlap with those in other biomes, but also have additional 
complexity that makes modeling and benchmarking a distinct challenge from that experienced in other regions. 
These include challenges related to biodiversity and how to represent it in simulations, and understanding the 
role biodiversity plays in buffering ecosystem responses to perturbations. Much advanced modeling has been 
done in tropical forests and through these efforts we have unveiled many challenges, including the difficulty in 
representing the diverse variety of above and belowground traits as they relate to water acquisition and use, and 
carbon metabolism. Benchmarking has revealed these challenges through comparison to drought-experiments 
and atmospheric constraints, with previous and current MIP’s providing great insight into the advantages and 
disadvantages of various numerical representations. While advances have been made, most work has pointed to  
the critical need for more extensive benchmarking of a range of processes at a range of scales, along with associated 
UQ and model development.

Representing these processes is particularly crucial as tropical forests are predicted by the CMIP5 generation of ESMs 
to be particularly important for both the carbon–climate and carbon–concentration feedbacks. This importance led 
to the focus of the NGEE Tropics project to develop and synthesize key datasets required to test the representations 
of tropical forest dynamics in ESMs, as well as to develop and integrate into ESMs novel modeling approaches 
for representing these processes. The activities described below, including synthesizing forest inventory data for 
benchmarking demographic models, collecting more highly process-resolved observations on plant hydraulics and 
nutrients, and introspecting models to allow for benchmarking, are core activities of the project, which will help with 
the goal of reducing model uncertainties in tropical forest dynamics as an Earth system feedback.

C.5.2 New Metrics and Benchmarking Approaches

New and novel datasets, including spatially distributed inventories of survival and mortality (e.g., RAINFOR and 
Forest-GEO) and ecosystem processes (e.g., FluxNET, GEM), are providing insight into how to improve model 
realism, but these have not been capitalized on for benchmarking. Such regionally and pan-tropically distributed 
datasets can enable advances in model benchmarking, which thus far has been primarily sub-regional in scale. 
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C.5.3 Observational Data Needs

Data availability is improving for species level traits of value for model parameterization, but evaluation datasets 
against manipulations (drought, CO2, temperature) are extremely limited, and while inventory datasets are available, 
benchmarking against them has yet to be attempted. Remote sensing is promising using a variety of platforms that 
can provide ecosystem level benchmarking, but cannot yet provide species or individual resolution information. 
FLUXNET sites exist, but again are few and far between. Understanding physiological processes is one of the largest 
uncertainties in the tropics, again due to the diverse nature of forest composition and climate drivers both within and 
across sites. Thus a combination of data types, from inventory to process measurements to fluxes and remote sensing, 
provides the best possible suite of benchmarking in the tropics. This is true for all systems, but in the particularly 
complex tropics this is especially true. Large gaps exist in spatial coverage of critical regions, particularly in the 
perhumid western Amazon, tropical Africa, and in the island regions surrounding southeast Asia.

Key parameters that require investment for data collection include turnover, C allocation, whole tree hydraulics, 
phenology, LAI, reproduction, dispersal, and all of their controls. Belowground processes, including soil depth, soil 
moisture availability, and soil water acquisition for transpiration, are recognized as important. Multiple processes 
were identified as poorly understood, such as how mechanisms of seasonal drought tolerance transcend to anomalous 
drought survival, and interactions with mean annual precipitation, vapor pressure deficit, and fertility. The 
community agreed that looking at response surfaces for benchmarking from both observational and manipulative 
studies was extremely valuable.

Table C.5.1. Observational requirements for benchmarking of tropical processes.

 Domain Status Variables

Vegetation Data exists and is being used for 
benchmarking

Greenness indices; upscaled carbon flux 
data; static remotely-sensed biomass

Data exists but must be synthesized and/or 
used for benchmarks

Inventory data: biomass, growth, mortality; 
plant trait covariation with climate; 
chlorophyll fluorescence; experimental 
climate manipulations

Data does not exist Large-scale biomass dynamics; tropical CO2 
fertilization experiments; pantropical carbon 
allocation datasets

Soil Biogeochemistry Data exists and is being used for 
benchmarking

Soil carbon distributions, profiles, isotopic 
data

Data exists but must be synthesized and/or 
used for benchmarks

Ecosystem process variation across soil 
fertility gradients

Data does not exist Pan-tropical peatland maps

Physical soil-plant-
atmosphere system

Data exists and is being used for 
benchmarking

Upscaled ET flux data; terrestrial water 
storage; river runoff

Data exists but must be synthesized and/or 
used for benchmarks

Plant stemwood trait variation

Data does not exist Vertical root water uptake profiles, sap flow 
datasets

C.5.4 Model Development and Output Requirements

Model development in water uptake, plant hydraulics, carbon allocation and metabolism, and mortality and survival 
strategies, all within a framework that accounts for hyper-diversity, has been targeted as urgent steps for next-
generation models in the tropics. Nearly all aspects listed above as observational needs also are model development 
needs. Thus, what is needed for benchmarking purposes is a greater ability to test these novel processes and compare 
them against observations. 

As the community shifts from unstructured to structured vegetation models, model outputs must move beyond 
gross stocks and fluxes and include information on the heterogeneity and structure of vegetation. This includes size 
distributions, distributions of plant traits in models that predict these, and more detailed heterogeneity associated 
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with LULCC. Furthermore, how these axes of heterogeneity covary with each other and with plant function is crucial 
to understand the role that diversity and heterogeneity play in these ecosystems.

More finely-resolved process models must also include sufficient outputs to benchmark these processes against 
observations. For example, models that trace hydraulic fluxes from the soil through the canopy must be testable 
against observations of sap flow, tissue water potential, and overall canopy fluxes, and thus must output this 
information for purposes of comparison. As nutrient-enabled models include more detailed representation of both 
nitrogen and phosphorus, key diagnostics at site, regional, and global scales are required to evaluate the representation 
of the nutrient cycling and the relationships between nutrient and carbon cycling in these models. 

C.6 Remote Sensing 
 Shawn Serbin

C.6.1 Scientific Challenges and Opportunities for Model Evaluation

The large extent and high diversity of vegetation comprising Earth’s biomes present a significant challenge for 
local to global-scale terrestrial ecosystem process modeling efforts, including benchmarking and evaluation of 
model projections. To provide the knowledge and understanding necessary to improve model parameterizations, 
representation and evaluation of alternative model structures and observations are needed at the relevant spatial and 
temporal scales for controlling processes. The general goal of remote sensing from leaf to global scales is to provide 
critical information on ecosystem dynamics (e.g., seasonality, response to perturbations), and states (e.g., composition, 
structure, biomass), as well as to scale, map, and monitor important ecosystem properties and processes across 
space and through time. Compared with other observational and model evaluation datasets (e.g., inventory, eddy 
covariance, manipulation, and global change experiments), remote sensing data provide the synoptic, continuous, and 
temporally frequent observations needed for site to global model benchmarking. Moreover, the relative magnitude 
of remote sensing datasets of various types and temporal extents has helped to usher in the current data-rich era in 
ecology and global modeling, providing large volumes of information across scales that could be leveraged within data 
assimilation frameworks for model calibration and development activities.

Remote sensing observations and products useful for model evaluation span a fairly broad range of scales (temporally 
and spatially) as well as biophysical properties such as leaf area index (LAI) and the fraction of photosynthetically 
active radiation absorbed by vegetation (e.g., Myneni et al., 2002; Baret et al., 2007), states such as biomass (e.g., 
Saatchi et al., 2011), soil or canopy moisture (Petropoulos et al. 2015; Schimel et al., 2015), energy balance products 
such as surface albedo (Shaaf et al., 2002), to process-level observations, including evapotranspiration (Mu et al., 
2011), photosynthesis (e.g., Running et al., 2004; Ryu et al., 2011; Guanter et al., 2014; Serbin et al., 2015), and 
plant functional traits (e.g., Asner et al., 2015; Singh et al., 2015). Calibration of algorithms for the retrieval of 
measurements using remote sensing observations vary in approach and complexity but generally require some degree 
of the physical relationship as well as independent information from ground or other observations for evaluation 
prior to any scientific or modeling use. In addition to other smaller campaigns, past and ongoing global change 
manipulations (e.g., FACE, DOE SPRUCE), field experiments, and large-scale projects such as the DOE Next 
Generation Ecosystem Experiments (NGEE) in the Arctic and tropics as well as NASA’s Arctic Boreal Vulnerability 
Experiment (ABoVE) provide ample opportunities to refine remote sensing methods and products for use within 
ILAMB and elsewhere (Schmid et al., 2015). Leveraging projects such as these enables the development and testing 
of existing approaches, new techniques, and the development of new observations or data products based on new 
instrumentation or the “fusion” of observations into new synthetic measurements. Here, we briefly review the use 
of past, present, and future uses of remote sensing data and new technologies for model evaluation within ILAMB, 
provide caution for proper use and avoiding pitfalls, and provide some guidance on ways to use observations within 
model–data integration or data assimilation frameworks. 

Within the scope of benchmarking terrestrial ecosystem processes and climate–biosphere feedbacks with remote 
sensing observations, we explored the following key questions:

» What can be observed with remote sensing now and with additional research or development efforts? What is 
operational and what is experimental?

» What can be done with existing technologies?
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» What new imaging technologies, approaches, or product development efforts are needed?

» How do we better leverage airborne platforms? Can we use sub-orbital data for local-scale benchmarking and 
couple this with larger scale activities using satellite observations?

» How do we sustain a suite of remote sensing observations for current and future MIPs and benchmarking activities 
given the typically ephemeral lifespan of most airborne and spaceborne platforms?

» How do we better incorporate uncertainties in remote sensing observational data products with 
benchmarking activities?

In addition, it is important to understand what processes and scales remote sensing data can contribute for model 
evaluation and development. Many approaches exist for developing observations and data products for efforts like 
ILAMB from the leaf to global scales. Critical for these activities are a careful consideration of the methods used for 
scaling observations, including algorithms and uncertainties, as well as the methods for evaluation such as point-
to-point versus average response. These topics and others were discussed to develop a roadmap for data product 
development, evaluation, uncertainties and appropriate uses, and sustainability and evolution within ILAMB. It 
was agreed that this discussion was a critical activity for developing long-term products that can help constrain new 
process representations and model structures. Importantly, these new data products can be developed with the same 
iterative uncertainty quantification frameworks used for model–data experimentation (ModEx). This is critical for 
developing standard approaches for model evaluation and calibration through data assimilation, which is currently 
limited by availability of products and a dearth of information on product uncertainties.

C.6.2 New Metrics and Benchmarking Approaches

Remote sensing observations and derived data products fill a critical role in the evaluation of process models from 
the site to global scales (Schmid et al., 2015; Schimel et al., 2015). One of the key capabilities of remote sensing 
observations for model evaluation and benchmarking is the ability to capture the broad, synoptic context as well as 
relevant timescales (annual mean, seasonal cycle, interannual variability, trend) for comparisons with a wide array of 
model states. However, important considerations include the necessary spatial extent, spatial and spectral resolution, 
and whether individual tree/plant scale or larger watershed scales are relevant. Moreover, these considerations also 
depend on the model process under evaluation. Finally, remote sensing metrics and benchmarks can evolve with 
new instrumentation and/or help to guide further investments in observing platforms to improve benchmarking 
activities. Table C.6.1 highlights some of the new remote sensing benchmarks that could be leveraged or expanded 
within ILAMB.

Table C.6.1. New Metrics/Model Diagnostics/Benchmarks.

 Topic
Proposed 
Approach

Details & 
Rationale

Spatial & 
Temporal Scales Benchmarks

Ecosystem state Active and time-
series optical remote 
sensing, sensor 
fusion 

Benchmark model 
output states, 
such as biomass, 
canopy structure or 
soil moisture. Do 
models capture the 
evolution and spatial 
patterns 

1 m – 10 km, annual RMSE, spatial 
patterns, vertical 
distribution

Vegetation/
soil properties, 
parameters, and 
functional diversity

Imaging 
spectroscopy, 
microwave, thermal, 
gravity

Evaluate model 
parameterization 
and emergent 
properties. Do 
models adequately 
capture patterns 
in plant functional 
properties/traits 
and soil moisture 
through time, 
resulting in accurate 
states for the right 
reasons? 

1 m – 30 km, 
monthly to annual

RMSE, spatial and 
temporal patterns, 
Vertical distribution, 
functional 
relationships
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 Topic
Proposed 
Approach

Details & 
Rationale

Spatial & 
Temporal Scales Benchmarks

Vegetation dynamics Time-series active/
optical remote 
sensing, sensor 
fusion

Do models accurately 
represent plant 
demography and 
succession, growth/ 
mortality

1 m – 10 km, daily to 
monthly

Functional 
relationships, phase, 
RMSE

Vegetation 
seasonality & 
functional phenology

In situ, airborne, 
satellite time series, 
synthetic time 
series from multiple 
platforms, thermal, 
SIF

Evaluate model 
capacity to represent 
phenology from 
arctic to tropics, 
capture seasonality 
of C, water, EB 
cycling

1 m – 10 km, daily to 
weekly

Phase, temporal 
pattern, interannual 
variability, functional 
relationships

Canopy optical 
properties and 
energy balance

Canopy simulator: 
Simulate the spectral 
signature (SWIR, 
thermal, microwave) 
of various remote 
sensing instruments 
given a particular 
model state. Enable 
direct connection 
between RS data and 
model structure

Modify model 
canopy radiative 
transfer code to 
provide directly 
comparable 
outputs (e.g., 
surface reflectance, 
LiDAR waveform, 
thermal brightness 
radiance). Evaluate 
model structure 
and dynamics, 
facilitate direct data 
assimilation

1 m – 1 km, weekly 
to monthly

RMSE, seasonal cycle, 
evolution of canopy 
optical properties, 
functional 
relationships 
between optical 
properties and 
model processes 
(e.g., GPP)

Perturbations Time series, active 
microwave and 
lidar, sensor fusion, 
thermal

Test ability for 
models to capture 
and correctly 
respond to various 
disturbance or 
change events

10 – 100 km, days to 
annual

RMSE, spatial 
patterns, temporal 
trajectory, phase

Figure C.6.1. Example maps of foliar morphology (leaf mass area, Marea) and nitrogen concentration (N%) derived 
with NASA AVIRIS imagery. Trait maps such as these can be used to benchmark prognostic model predictions of 
properties such as canopy / leaf nitrogen over space and time. However, the utility of these maps is dependent  
on providing appropriate uncertainty estimates to evaluate model spread versus data uncertainty. Adapted from  
Singh et al. (2015).
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In general, ILAMB and model benchmarking could leverage new remote sensing techniques, technologies, and 
platforms, including airborne platforms, to expand the diversity and extent of observations for evaluating models 
(Schimel et al., 2015; Shugart et al., 2015; Schmid et al., 2015). For example, imaging spectroscopy (IS) enables 
the retrieval of canopy and soil functional traits at a range of scales (e.g., Ollinger et al., 2002; Ustin et al., 2004; 
Singh et al., 2015; Serbin et al., 2015; Figure C.6.1), which can be used to test model carbon and nutrient cycling. 
IS data can also quantify plant composition 
and functional diversity across landscapes, 
allowing for the characterization of patterns 
across climatic and topographic gradients, 
enabling the parameterization or validation of 
model response surfaces (Fisher et al., 2015). 
Active systems such as LiDAR (from airborne or 
spaceborne platforms) could be used to evaluate 
modeled changes in canopy structure through 
time or in response to disturbance, or to test 
model predictions of carbon storage, succession, 
or demography, together with spectroscopic 
information e.g., Kumar et al., 2015; Figure 
C.6.2). Thermal infrared (TIR) observations 
are particularly useful for evaluating model 
predictions of the surface energy balance, 
seasonality, and water cycle and can be 
coupled with measurements of soil moisture or 
storage. Together, observations from imaging 
spectroscopy, LiDAR, and TIR can be used to 
benchmark the representations of surface energy 
balance, albedo and canopy radiative transfer 
(Figure C.6.3). Finally, there are an increasing 
number of leaf to near-surface remote sensing 
datasets (e.g., leaf optical properties, phenology 
cameras, tower-mounted spectrometers) that 
could be used to benchmark and evaluate model 
leaf to canopy parameterization, predictions of 
seasonality, or scaling approaches.

Figure C.6.2. (a) 3-D LiDAR point cloud at 30 m × 30 m region (black square) in 
a typical cove forest of the Great Smoky Mountains National Park. (b) The raw 
LiDAR point cloud (3,985 points), showing the imprints of the underlying cove 
topography. (c) LiDAR point cloud after topographic detrending and filtering 
(3,936 points) that converted the elevations to above ground level elevation. 
(d) Distribution of LiDAR point density along the vertical profiles in a cove 
forest dominated by tall trees and a dense understory. Adapted from Kumar 
et al. (2015).

Figure C.6.3. The relationship between radiation, canopy structure, optical properties and key processes including 
metabolism, water and energy cycling, as well as C allocation and turnover. Optical and thermal data can inform 
model representation energy, C, and water fluxes while LiDAR remote sensing can provide critical information on 
canopy structure, turnover and disturbance. (Adapted from Serbin et al., in prep)
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In addition to direct or seasonal comparisons, remote sensing data within ILAMB should be used as a metric of 
functional responses. For example, models often fail to adequately capture short-term perturbations, such as acute 
drought; however, remote sensing observations can often more completely characterize the ecosystem response and 
short- to long-term recovery (AghaKouchak et al., 2015). By comparing the observed functional responses through a 
suite of remote sensing measurements (e.g., Table C.6.2) we can test the model response in magnitude, timing, and 
extent. Moreover, we can mine remote sensing archives to find similar perturbations through the record of data to 
identify the typical response to a change event and test the model functional response. This serves as a means to both 
assess and provide functional constraints for models.

C.6.3 Observational Data Needs

The advantage as well as the disadvantage of remote sensing observations for model benchmarking is the diversity 
in scale, platforms, sensors, and approaches for collecting, scaling and providing data products for key terrestrial 
biophysical and functional properties. As such, a challenge for benchmarking with remote sensing is reconciling the 
typically ephemeral nature of many satellite or aircraft missions which make it challenging to provide consistent 
or wall-to-wall data products over long periods, scale mismatch, and embedded assumptions in data products. 
However, the diversity of past, present, and future missions also lends itself to the development of new observations 
and products for model evaluation such as comparison of model states (e.g., LiDAR canopy structure, imaging 
spectroscopy derived forest composition, and functional diversity) and process (e.g., SiF vs. model GPP). An 
additional challenge lies in the tendency to develop remote sensing data products which are themselves based on a 
model (e.g., global MODIS NPP, LAI, ET) and the need to reconcile the potential differences in the ways in which 
these observations/model outputs are defined. This often results in products that should not be used in benchmarking 
(see Section C.6.4 below). Below are the beginnings of a list of considerations for filling data needs:

Table C.6.2. Measurement Needs.

 Topic
Measurement 
Approaches Temporal Scale Spatial Scale Considerations

Aboveground 
structure & biomass

LiDAR, radar, repeat 
high-resolution 
optical imagery, 
sensor fusion

Annual 1 m – 10 km LiDAR coverage 
is still limited and 
spatial coverage 
is typically small. 
Data availability 
varies. Access to 
high-resolution 
optical imagery 
to create canopy 
height maps is still 
limited. Microwave 
and interferometric 
SAR coverage is 
limited or pixel size 
is typically too large 
for detailed site 
scale assessment. 
Uncertainties with 
allometry and scaling 
approaches

Plant demography LiDAR, optical time 
series, imaging 
spectroscopy

Monthly to annual 1 m – 10 km LiDAR similar to 
above, limited access 
to IS data. Need to 
integrate remote 
sensing with ground 
observations

Detailed plant 
composition, land-
cover change

LiDAR, optical time 
series, imaging 
spectroscopy, sensor 
fusion

Annual 1 m – 100 km Beyond basic 
PFTs. Spatial scale, 
temporal resolution, 
phenological timing
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 Topic
Measurement 
Approaches Temporal Scale Spatial Scale Considerations

Succession and 
mortality 

LiDAR, optical time 
series, microwave, 
sensor fusion

Monthly to annual 1 m – 10 km Attribution, timing 
of imagery

Carbon flux, 
photosynthesis, 
photosynthetic 
capacity

Optical time 
series, imaging 
spectroscopy, vertical 
column CO2, SIF

Daily to monthly 10 m – 100 km Measurements of 
C flux parameters/
photosynthetic 
capacity (e.g., 
Vcmax) are preferred 
over correlation 
with GPP. Leverage 
geostationary 
satellites, 
space station 
instrumentation 
(OCO-3). SIF still 
needs development 
to identify links 
to GPP at remote 
sensing scales

Water flux/ET, 
canopy moisture, 
balance, wetlands 

Optical, thermal, 
microwave, gravity

Daily to annual 10 m – 100 km Matching flux with 
storage, delineating 
seasonal and 
permanent wetlands

Surface energy 
balance

Thermal, imaging 
spectroscopy

Daily to monthly 10 m – 10 km Higher temporal 
frequency TIR data 
at spatial scales of 
30 – 100 meters is 
needed. Spaceborne 
IS is needed to get 
high-resolution 
surface albedo data 
globally

Vegetation 
seasonality, LAI, and 
functional phenology

Optical time 
series, imaging 
spectroscopy, 
thermal, SIF

Daily to monthly 1 m – 100 km SIF retrieval of 
C flux still needs 
development

Vegetation functional 
traits, biochemistry

Imaging 
spectroscopy

Monthly to annual 1 m – 10 km In situ datasets of 
key plant traits 
in critical biomes 
(e.g., Arctic, tropics) 
are needed to 
calibrate empirical 
scaling approaches. 
RTM approaches 
need additional 
development to 
incorporate a wider 
range of plant traits. 
Spaceborne IS is 
needed to gather 
global plant trait 
datasets

Canopy optical and 
thermal properties, 
architecture 

LiDAR, optical 
imagery, imaging 
spectroscopy, 
thermal

Daily to monthly 1 m – 10 km Spaceborne IS is 
needed. Higher 
temporal frequency 
TIR data at spatial 
scales of 30 – 100 
meters is needed

Vegetation optical 
depth

Active/passive 
microwave

Weekly to monthly 1 km – 30 km Data availability, 
spatial and temporal 
resolutions
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In addition to identifying the broad sensor types listed in Table C.6.2 (e.g., spectroscopy, LiDAR, thermal), 
consideration of the methods for developing data products to meet observations needs together with detailed 
uncertainty assessment is required for any remote sensing data in ILAMB. Many of the data products can be 
generated with a range of approaches from empirical to modeled (i.e., variable driven or radiometric data-driven). In 
some cases empirical approaches are currently preferred (e.g., canopy traits) while others such as microwave vegetation 
optical depth can be retrieved effectively through radiative transfer modeling. The approach taken should minimize 
the number of assumptions as well as avoid the use of a model that differs significantly from that underlying the 
terrestrial biosphere model. In other words, minimize the use of a remote sensing observation that uses a different 
approach and assumptions or treat as a comparison rather than as a direct observation. In addition, the approach 
should provide the best estimate of data product uncertainties possible, preferably at the pixel scale. To the extent 
possible, the development of products and approaches should be shared across groups to standardize. Airborne data 
should be leveraged where possible to provide novel local to regional scale benchmark data products or target “hot 
spots” to challenge the models. To achieve these goals, ILAMB should expand its “cyber infrastructure” to enable 
on-the-fly remote sensing data retrieval (including the mining of airborne data), generation of benchmarks, and 
model evaluation. This may require some development of standard data pre-processing and preparation, but this 
should be based on the state-of-the-art in the literature or through discussions with experts in the field.

Finally, capturing the seasonal “functional” phenology instead of only observing the changes in leaf quantity 
(e.g., LAI), for example, should be explored for use as an ILAMB benchmark. Models may capture the broad leaf 
emergence/senescence patterns but often fail to capture the true seasonality of C, water, and energy fluxes because 
they rarely account for changes in canopy physiology through the growing season. Imaging spectroscopy, thermal 
IR, and SIF are all ways to explore patterns in vegetation functional diversity and seasonality (e.g., Serbin et al., 
2015; Guanter et al., 2014). However, we must caution the use of SIF as a direct model constraint given there is still 
significant uncertainty in the signal observed by in situ and satellite based observations. Additional exploration of 
the SIF signal over time, in response to perturbations, and across sites is needed to better understand the connection 
between SIF and C flux.

C.6.4 Potential Pitfalls and Misuse of Remote Sensing  
 in Model Benchmarking

A number of potential misuses and pitfalls exist when leveraging remote sensing observations as model benchmarks. 
As already mentioned, remote sensing data products that are derived from models should be treated as a comparison 
benchmark and not a direct observation. However, treating model benchmarks as an actual observation and tuning 
the process model to match the remote sensing benchmark could lead to inappropriate parameterization or unstable 
model outputs under new environmental conditions. Moreover, remote sensing driven light-use and water-use 
efficiency approaches should be used cautiously. Instead of direct benchmarks, these products should be used to assess 
the capacity of models to capture seasonal or inter-annual cycles given environmental conditions and as a comparison 
of spatial patterns, but the significant differences in model complexity make any direct evaluation challenging and 
inappropriate. In addition, remote sensing LUE/WUE approaches typically incorporate environmental downscaling 
on the efficiency term so that it is inappropriate to then evaluate model response to climate to test process model 
functional responses. However, remote sensing approaches that leverage the same fundamental photosynthetic 
schemes as the full process model (e.g., Ryu et al., 2011) could be used as an alternative. Whenever possible the 
allometric relationships used to derive remote sensing estimates of biomass, carbon, or canopy structure should match 
those used for the same PFTs within the model. Difference in assumptions, uncertainties, and detail of allometric 
relationships can lead to significant model–data mismatches. At a minimum these uncertainties need to be included 
in model benchmarking. We also suggest caution using SIF as a benchmark for model carbon flux and GPP. There is 
still significant uncertainty in the signal observed by in situ and satellite-based observations and the current regressions 
with tower-based GPP are insufficient as direct benchmarks for GPP, although they can be used for comparative 
purposes. In addition to methodological considerations, spatial and temporal scale of remote sensing data should be 
considered when developing model benchmarks to minimize having to aggregate/disaggregate data products to match 
model outputs.

Finally, the ILAMB framework needs a direct way to integrate uncertainties in model outputs and remote sensing 
benchmarks. Accounting for uncertainty will provide more accurate assessments of model predictions and error, as 
well as facilitate data assimilation to improve model calibration.



89

C.6.5 Model Development and Output Requirements

Remote sensing can not only help to evaluate models and submodels to guide new developments at various spatial 
and temporal scales but also could guide the development of new model outputs to further facilitate direct model–
data comparisons (or assimilation) specifically focused on the use of remote sensing observations (Figure 6.3). 
Requirements for this are consistent spatial and temporal scales, similar variable definitions and units (less important), 
and explicit development and handling of remote sensing product uncertainties. An important model development 
recommendation and model output requirement identified within the group was a remote sensing “simulator” (e.g. 
Figure C.6.4; Viskari et al., in prep) to provide outputs that are more directly comparable with basic remote sensing 
measurements (e.g., spectral reflectance, thermal radiance, LiDAR waveform) rather than derived products (e.g., 
biomass). To facilitate this, models would need to update their canopy radiative transfer code base to provide a full 
canopy spectral response, based on the leaf optical properties and internal model structure, instead of the typical 
surface albedo in a few spectral regions (e.g., visible, near-infrared). Importantly, it would be beneficial for models 
to develop this simulator as code that can execute outside of the full model framework, but still compile against the 
full model code based and functions/libraries, to facilitate rapid execution by running only the functions needed to 
simulate canopy radiation transfer. This is dependant on the remote sensing instrument’s ability to be simulated (e.g., 
Shiklomanov et al., 2016) to directly compare model predicted (dependent on modeled state) versus observed remote 
sensing patterns. This approach would also facilitate direct assimilation of remote sensing data to inform model 
parameterization and test alternative model structures.

In addition to the remote sensing simulator, model code should be  
adapted to leverage the latest high-performance computing  
environments to facilitate comparison of models against large remote  
sensing datasets across large spatial and  
temporal scales. In addition, on-the-fly  
retrieval and processing of airborne data  
will require distributed computing.

Figure C.6.4. Example of the use of an “sensor simulator” within a terrestrial biosphere model (TBM; in this case 
ED2) to facilitate direct assimilation of and/or benchmarking against remote sensing observations within the PEcAn 
framework (Shiklomanov et al., 2016; Viskari et al., in prep). In this approach the output TBM spectral signature is 
based on the internal model structure (i.e. canopy biomass, height, RT properties) and compared with comparable 
remote sensing observations (i.e., surface reflectance, albedo). This allows for direct comparison and evaluation of 
associated processes such as photosynthesis, energy balance, surface temperature and evapotranspiration as well as 
identify uncertainties and areas to target for model improvement.
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C.6.6 Computational Needs and Requirements

Depending on the type of remote sensing observation, scale, algorithmic approach, and resultant data product, the 
computational needs will vary considerably. For example, an empirical model applied to a series of Landsat images 
(i.e. image stack) will be relatively quick to generate a new product; however, the use of a radiative transfer model 
(RTM) together with a highly dimensional dataset to develop a complex data product could take several hours 
to months to produce on a high-performance computing (HPC) environment. These considerations therefore 
determine the degree of availability of data products as well as the capacity to provide near real-time information for 
benchmarking models during short-term perturbations. There are means to reduce computational costs or improve 
the speed of product development such as look-up tables and learning algorithms (e.g., ANN). ILAMB should invest 
in a cyberinfrastructure to facilitate the use of airborne remote sensing data such as imaging spectroscopy and LiDAR, 
including data storage, handling, and preprocessing, as well as distributed or HPC to create or refine benchmark 
products. In addition, ILAMB should invest in efforts to assimilate remote sensing datasets to test, calibrate, and 
update model structures. Finally, all of these efforts need to consider observation uncertainties that may require 
computational approaches (e.g., resampling, ensembles) to estimate algorithm and pixel-scale error assessments.

C.7 Roles for Flux Networks 
 Dennis Baldocchi

C.7.1 FLUXNET: A Network of Eddy Covariance Flux Measurement Networks

Regional and global networks of eddy covariance flux towers, measuring fluxes of carbon, water and energy between 
terrestrial ecosystems and the atmosphere, are providing crucial data to the global carbon cycle science community 
(Baldocchi et al., 2001; Baldocchi et al., 2012; Reichstein et al., 2014).

Individual eddy covariance flux towers are capable of measuring mass and energy fluxes directly and quasi-
continuously on time scales of hours, days, years, and now decades. And, by assembling networks of flux towers, one 
is able to deduce how carbon, water and energy fluxes vary spatially, across many of the Earth’s climate and ecological 
spaces and disturbance/management regimes. Together, these flux data are being used to: 1) produce annual carbon, 
water and energy budgets (Baldocchi, 2008); 2) provide process level information about how ecosystem metabolism 
responds to biophysical perturbations (Biederman et al., 2016; Reichstein et al., 2014); 3) examine the role of 
trends in carbon fluxes to rising CO2 (Keenan et al., 2013); 4) quantify the variability of carbon fluxes to extreme 
events in climate forcings (Frank et al., 2015; Reichstein et al., 2013); 5) validate and parameterize a spectrum of 
machine learning, process and remote sensing models that are predicting, interpolating and extrapolating carbon 
flux information in time and space (Beer et al., 2010; Xiao et al., 2014); and 6) provide priors for Bayesian data 
assimilation models (Bloom et al., 2016; Williams et al., 2009).

Between 1997 and 2012 the global FLUXNET project was funded in an ad hoc manner with successive grants from 
NASA and the National Science Foundation as well as from Microsoft Corporation. An effort to modernize and 
update the FLUXNET data system and expand the database is currently being supported by DOE in the 2014 to 
2017 time-frame via collaboration with computer scientists from Lawrence Berkeley National Lab and University of 
Virginia along with our international partners.

The FLUXNET project and database are ready and ripe for use to advance carbon cycle synthesis by process-based, 
data assimilation and machine learning models and to address the next generation set of problems and questions; 
what is causing interannual variability in net and gross carbon fluxes?; are trends in carbon fluxes being induced 
by global change, and are these changes detectable?; how do fluxes respond to disturbance and management?; is 
ecosystem photosynthesis and water use efficiency responding to elevated CO2?; how well do models perform with 
soil water deficits and over open and complex canopies?; how accurate are the global upscaling estimates of gross and 
net carbon fluxes?

The production and distribution of flux data, and its accompanying metadata, to the global carbon cycle community 
requires human effort to recruit data from different countries and cultures, to build a harmonized dataset that has 
been subjected to quality control and assurance and to have the software and staff to update the database as new  
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data are submitted. Distribution of these data to the users and production of value added products that are of use  
to the modeling community for benchmarking model simulations requires a coordinated and sustained effort.  
Today, the FLUXNET database has submissions from 450 sites, representing 2700+ site-years of data, and  
200 variables on meteorological condition, water, carbon and energy fluxes. These data are distributed through  
http://fluxnet.fluxdata.org/, and the dataset continues to grow and expand. In addition, there are 77 sites with 
over a decade of data, giving the scientific community a new opportunity to study and model interannual variability, 
trends in fluxes and the effects of climate extremes on carbon, water and energy fluxes. Regional flux networks will 
continue into the future and new funding is needed to support the global FLUXNET activity to ensure these data  
are available and are in a useful form for new efforts on data-model inter-comparisons.

C.7.2 Current and Future Roles of FLUXNET for Carbon Cycle Synthesis

The eddy covariance method is currently the standard method used by biometeorologists to measure fluxes of trace 
gases between ecosystems and atmosphere. Fluxes are measured by computing the covariance between the vertical 
velocity and target scalar mixing ratios at each individual node (site). Key attributes of the eddy covariance method 
are its ability to measure fluxes directly, in situ, without invasive artifacts, at a spatial scale of hundreds of meters, and 
on time scales spanning from hours, days, years, and now, decades (Baldocchi, 2014).

Today, eddy covariance measurements of carbon dioxide and water vapor exchange are being made routinely on all 
continents. The flux measurement sites are linked across a confederation of regional networks in Americas, Europe, 
Asia, Africa, and Australia, into a global network called FLUXNET. This global network includes more than eight 
hundred registered and four hundred active measurement sites, dispersed across most of the world’s climate space 
and representative biomes (Figure C.7.1). Within this larger network, smaller meso-networks target specific land use 
types, such as urban areas, inland water systems, within a region. Many of these locales serve as focal points or anchor 
sites for sets of ecosystem-scale ‘manipulative’ studies. Comparative flux measurements are being made at satellite-sites 
that may differ by plant functional type, biophysical attributes, biodiversity, time since disturbance (e.g., fire, logging, 
windthrow, flooding, or insect infestation), or management practices (e.g., fertilization, irrigation, or cultivation). 
Distinct scientific attributes of the flux network include its ability to detect emergent scale properties of ecosystem 
metabolism at local to regional and global scales and quantify temporal and spatial variability in carbon, water and 
energy fluxes.

Figure C.7.1. The spatial representativeness of the FLUXNET network (existing towers labeled as blue dots), which 
is mapped relative to a set of quantitative ecoregions (white-to-black colors). Distance in data space to the closet 
ecoregion containing a site quantifies how well the FLUXNET network represents each ecoregion in the map. 
Environments in the darker ecoregions are poorly represented by this network. (Jitendra Kumar, Forrest M. Hoffman, 
William W. Hargrove, in prep.).
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The flux network continues to grow and expand, giving the model community open and fair use access to over 2700 
site years of flux data and complimentary meteorological and site information. The size and value of this database is 
unprecedented in the history of carbon cycle science and offers many unique opportunities for collaboration with 
model synthesis activities. So continued support for the operation of FLUXNET is a necessary and warranted cost if 
we are to achieve the scientific goals mandated to the carbon cycle science modeling community.

With regards to modeling work, the flux network is highly representative of most of the world’s ecosystems and 
climate spaces (Figure C.7.3). And statistically, the sparse tower network is representative of much wider regions and 
landscapes than the individual distinct tower footprints, as shown in Figure C.7.1 (Sundareshwar et al., 2007).

Figure C.7.2. Time series of flux network size by continent. Panels are for potential sites registered in the network, the 
previous 2007 La Thuile dataset and the potential size of the 2015 FLUXNET dataset, which is being processed, quality 
assured and corrected.
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Figure C.7.3. The correspondence between FLUXNET sites and the climate space (precipitation and temperature) of 
the Earth.
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Appendix D. 
Model Intercomparison Project (MIP) 
Benchmarking Needs and Evaluation 
Priorities
D.1 CMIP6 Historical and DECK 
 David M. Lawrence, Veronika Eyring, and Charles D. Koven

D.1.1 Scientific Challenges and Opportunities for Model Evaluation

The core of the CMIP6 process is a series of experiments, called the Diagnostic, Evaluation, and Characterization 
of Klima (DECK) (Eyring et al., 2016b). These runs formalize the set of standard climate model configurations 
that have historically been used both by the modeling centers and by previous CMIP activities, and comprise four 
experiments: (1) a land–atmosphere only model forced by reconstructed historical sea surface temperatures (i.e., 
Atmospheric Model Intercomparison Project (AMIP)), (2) a coupled land–atmosphere–ocean preindustrial control, 
(3) an abrupt quadrupling of CO2, and (4) an idealized 1% per year CO2 increase. Because of the idealized nature 
of these experiments, they are expected to be conducted in all future CMIP activities. In addition to the DECK 
experiments, all participating CMIP6 models are expected to perform a transient coupled land–atmosphere–ocean 
historical experiment driven by time-varying greenhouse gas concentrations (Historical) and, for ESMs with a fully 
prognostic carbon cycle, a second transient coupled 
land–atmosphere–ocean historical experiment 
driven by CO2 emissions rather than concentrations 
(esmHistorical). The DECK experiments form the 
hub of all CMIP6 activities (Figure D.1.1), and 
all other CMIP6 experiments may optionally be 
performed by modeling centers.

The Historical and esmHistorical experiments have 
provided the strongest basis for benchmarking of 
models, because of their correspondence to the 
period of scientific observation. In the first version 
of ILAMB (Mu et al., in prep), all benchmark 
diagnostics for the CMIP5 models were performed 
on either the Historical or esmHistorical (Hoffman 
et al., 2014) experiments, both of which are in the 
CMIP6 DECK experiments. These include a broad 
suite of remote sensing data, upscaled data such 
as soil maps, and system-integrative data such as 
atmospheric CO2 concentrations.

Figure D.1.1. Overview of the CMIP6 structure. All modeling 
centers will perform the DECK experiments and may 
optionally perform any other MIPs. Adopted from  
(Eyring et al., 2016b).
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D.1.2 New Metrics and Benchmarking Approaches

As with CMIP5 and the first version of ILAMB, we expect the DECK experiments to form the fundamental 
basis for model benchmarking approaches. One novel application in applying the ILAMB system to the CMIP6 
DECK experiments will be to benchmark the AMIP experiments in addition to the Historical and esmHistorical 
experiments. This will allow the diagnosis of land model fidelity as a function of ESM complexity, as that complexity 
changes from the relatively constrained AMIP experiments to the less physically-constrained Historical to the less 
biogeochemically constrained esmHistorical experiments.

D.2 C4MIP 
 Forrest M. Hoffman, Charles D. Koven,  
 and James T. Randerson

D.2.1 Scientific Challenges and Opportunities for Model Evaluation

For the coupled climate–carbon cycle model intercomparison project (C4MIP; Friedlingstein et al., 2006, 2014a; 
Jones et al., 2016), several aspects of the experiments create unique opportunities and challenges with respect to 
benchmarking and model evaluation. A key goal of C4MIP is to assess model-to-model variations in the strength 
of carbon–climate and carbon–concentration feedbacks. This is accomplished through a factorial experimental 
protocol that separates the radiative effects of CO2 from the biogeochemical effects of CO2. The use of benchmarks to 
discriminate among strong and weak feedback parameters such as beta-land (bL) and gamma-land (gL) may contribute 
to the development of new models that yield more realistic scenarios of carbon dioxide and temperature change 
during the latter part of the 21st century. These models, in turn, may be able to provide more accurate estimates of 
allowable emissions necessary to stabilize greenhouse gases at a particular level, thereby achieving a desired maximum 
temperature change target.

In this context, the development of “emergent constraint” benchmarks is potentially valuable and important. In 
past work, emergent constraint benchmarks have been developed for gamma-land (gL) using interannual variability 
in atmospheric carbon dioxide and temperature (Cox et al., 2013; Keppel-Aleks et al., 2014) and for the combined 
magnitude of beta-land (bL) and beta-ocean (bO) by assessing model biases relative to the long-term secular trend 
of atmospheric CO2 at Mauna Loa (Hoffman et al., 2014; Figure B.3.1). Additional work has suggested that 
the magnitude of NPP responses to atmospheric CO2 may be overestimated in the models because they do not 
properly account for influences on growth from nitrogen and phosphorus limitation (Wieder et al., 2015b). Further 
quantitative assessment of significance to nutrient limitation for contemporary forest responses to global change is 
needed, although model overestimates of the strength of leaf area trends in many areas as compared with satellite 
observations provide evidence for a positive bias in the sensitivity of NPP to CO2 enrichment (Smith et al., 2016b).

For the C4MIP simulations planned as a part of CMIP6, new simulations forced with historical and future “business 
as usual” CO2 concentrations from 1850 to 2300 will permit exploration of the consequences of contemporary 
biases in the representation of soil processes for the strength of the permafrost-mediated carbon–climate feedback. 
In CMIP5, none of the models had made investments in the representation of permafrost carbon stocks, and the 
idealized 140 year 1% per year CO2 increase (1pctCO2) simulations were not designed to allow for a quantitative 
assessment of soil thaw processes that take several centuries to develop. 

Modeling centers that will contribute simulations to CMIP6 are expected to use ESMs that have improvements in 
the representation of several processes, including permafrost (Koven et al., 2011), nitrogen dynamics, fires (Li et al., 
2013; Kloster et al., 2010), and hydrological processes (Swenson et al., 2012). Some of the models will have a new 
representation of dynamic vegetation, and some improvements are expected in the ability of these models to capture 
observed trends in shrub and tree cover. Furthermore, it is expected that existing aspects of the models will be much 
more highly constrained by existing observations than in prior versions. For example, observations that were not 
available at the time of CMIP5, such as globally-upscaled FLUXNET-based GPP (Beer et al., 2010), can allow the 
models a clearer observationally determined current state of the biosphere to use as their target for development. 
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D.2.2 New Metrics and Benchmarking Approaches

The crucial requirement for enhancing predictive capability is the ability to tie the transient behavior of the models 
over the future period to currently-observable quantities. A promising approach here is the identification of 
possible emergent constraints, as discussed above, for both system-integrative measures such as atmospheric CO2 
concentration or growth rate, and more process-resolved emergent constraints on different aspects of the Earth 
system. Identifying these and evaluating their domain of applicability is crucial to developing a more predictive 
capacity for understanding terrestrial carbon cycle feedbacks.

D.2.3 Observational Data Needs

Within the last 5 years, considerable progress has been made in quantifying aboveground live biomass stocks. 
Estimates by Saatchi et al. (2011), and Baccini et al. (2012) have effectively combined optical, LiDAR, and 
microwave remote sensing techniques with plot-level field observations to create pan-tropical estimates of 
aboveground biomass. These estimates point to a considerable reduction in the magnitude of aboveground carbon 
stocks in intact tropical forests compared with earlier estimates from the International Geosphere-Biosphere Program 
in the 1970s and other approaches.

In parallel, new estimates of soil carbon have become available in permafrost areas (Hugelius et al., 2014) and globally 
from analysis of plot-level soil profile observations.

Important gaps that remain include accurate quantification of litter and coarse woody debris pools, wood and litter 
turnover times, and the representation of organic soil layers. In several biomes, including boreal forests, aboveground 
and belowground litter is mixed with a living moss layer, live roots, and coarse woody debris in organic soil layers 
above the mineral surface. Some ambiguity remains with respect to the representation of organic soils and moss layers 
in existing soil carbon datasets. 

Another critical issue is that many of the aboveground live biomass products have been developed for forests. 
Depending on the methodology, tree and shrub biomass may not be included, making it challenging to compare 
with grid cell averages from models that reflect contributions from a combination of different plant functional 
types. Also, this means that aboveground biomass estimates in savannas and shrublands have higher uncertainties. 
By disaggregating stocks for different plant functional types, C4MIP may enable more accurate comparisons in 
the future.

Apart from stocks, important carbon cycle analysis has explored the change in forest inventories to estimate rates 
of carbon accumulation (Pan et al., 2011). One important next step that could increase the value of the inventory 
observations is the development of coarsely gridded (~0.5°) carbon change products that do not compromise privacy 
of landowners, yet enable effective model comparisons and validation using remote sensing imagery. Another 
important goal is to harmonize the global stock estimates with carbon fluxes derived from national inventories.

Higher quality datasets of land cover change, changing human population density, roads, and other measures of 
landscape fragmentation are needed to better quantify disturbance dynamics and migration rates within the models.

So far, evaluation of model dynamics at hourly and diurnal time scales has not advanced as rapidly as evaluation using 
monthly means. This allows model biases that are evident at this timescale (e.g., Ghimire et al., 2016) to persist. 
This deficiency could be addressed by outputting a set of model fluxes that most highly correspond to measured 
eddy covariance data (NEP, GPP, Re, LH, SH) at sub-daily frequency over the period of flux tower observations 
(approximately 1995–present), for direct comparison.

Ultimately, a global carbon stock data assimilation system that integrates inventory and plot-level data to create 
maps of stocks and accumulation/degradation rates would be extremely valuable to the ESM community. Key 
requirements for such a system would be the need for wall-to-wall coverage of carbon in all vegetation types 
and accurate accounting of the continuum of carbon among living vegetation (separate above and belowground 
components), litter (separate above and belowground components), coarse woody debris, and soil organic and soil 
mineral pools. Extensive validation would be essential for creating a useful system. Such a system could be forced with 
“fast” response variables such as assimilated GPP, but a flux-driven system also could be a parallel activity because the 
timescales and types of observational constraints that are useful are so different.
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D.2.4 Model Development and Output Requirements

Currently, the terrestrial components in ESMs have major limitations that may bias carbon cycle feedback 
projections, and further model development is required to alleviate these shortcomings. A crucial limitation is the 
current representation of nutrient cycles, which may provide a strong limitation to growth under elevated CO2, 
while stimulating growth in response to increased soil decomposition in a warmer climate (McGuire et al., 2001). 
Whereas some terrestrial components of ESMs have begun including nitrogen and/or phosphorus cycles (Thornton 
et al., 2007; Wang et al., 2010, Zaehle and Friend, 2010; Yang et al., 2016), uncertainty in these processes is 
extremely high and requires much more consistent benchmarking with observations. Vegetation models currently in 
use also primarily represent woody biomass as a uniform pool with a set turnover time, which barely changes under 
the global change pressures of the 21st century (Koven et al., 2015), whereas in reality wood turnover is a highly 
emergent property resulting from the recruitment, growth, and mortality of individual tree stems. Models that relax 
this “big wood” assumption (Wolf et al., 2011) require more detailed output of forest size distributions and output 
of process variables resolved along an axis of plant size for comparison with observations. Furthermore, vegetation 
models have typically represented vegetation with fixed PFT traits and either fixed PFT geographic distributions or 
highly-parameterized DGVM submodels. The changes of plant traits and their geographic distributions in emerging 
novel climates are highly uncertain and require much more detailed representation of the processes that govern plant 
functional diversity and biogeography. Other vegetative processes that are poorly represented in current models 
include water transport from roots to stomates and allocation of plant resources to multiple plant tissues.

In addition to the above weaknesses in the representation of vegetation processes, soil carbon cycling processes are also 
highly uncertain and likely biased in current models. Current terrestrial models assume linear soil carbon tendencies, 
a poorly-founded assumption given that decomposition is driven by microbial activity exhibiting highly nonlinear 
dynamics. Some modeling centers are developing nonlinear soil models (e.g., Sulman, 2014; Wieder et al., 2015a), 
but the jump in complexity and associated parametric and structural uncertainty of these models (Wang et al., 2014; 
Wang et al., 2016) must be met with greatly increased benchmarking datasets. Second, the assumption that the 
near-surface soil environment is a good proxy for whole-soil decomposition is poorly founded, particularly for the 
high latitude soil carbon pool where steep gradients in the soil environment—driven by transport, cryoturbation, 
and bioturbation processes—result in enormous stocks of carbon at depth. Resolving these gradients leads to a sign 
change in the response of the high latitude system with warming (Koven et al, 2011), and it is thus imperative for 
models to systematically resolve these vertical gradients (He et al., 2016) and output biogeochemical variables along 
the vertical axis for benchmarking purposes. Lastly, terrestrial models have typically focused on mineral soils, despite 
the importance of peatlands in both high latitude and tropical ecosystems. Resolving the processes responsible for 
organic soil dynamics, and benchmarking these models with synthesized datasets, is crucial to remove this bias from 
model projections.

D.3 LS3MIP 
 Hyungjun Kim, Jiafu Mao, and Andrew G. Slater
LS3MIP (van den Hurk et al., 2016), another set of optional CMIP6 experiments, contains a series of coupled and 
off-line land surface experiments designed to illuminate feedback processes as well as provide information about 
model structure and parameters. It is a coordinated effort among the Global Soil Wetness Project 3 (GSWP3), 
Global Land–Atmosphere Coupling Experiment (GLACE) and Earth System Model Snow Model Intercomparison 
Project (ESM-SnowMIP). Each project may have experiments additional to the LS3MIP core. Metrics for LS3MIP 
models are likely to include standard verification methods, items aimed at assessing feedbacks, and methods for 
understanding process representation in models. As with all data used for model assessment or data assimilation, 
understanding the uncertainties (both observational error and representativeness error) is required. LS3MIP is largely 
concerned with snow and soil processes, their (often seasonal) timescales, and their impact on the greater climate 
system. To that end, the discussion here revolves around snow and soil.

Verification involves simply comparing model output to observations using standard scores such as bias, root mean 
squared error, mean absolute difference, etc. These metrics are designed to demonstrate the skill of the model 
simulation, while not necessarily attributing cause and/or effect. Measures of feedback strength have been proposed 
for soil moisture (Koster et al., 2004), snow (Xu and Dirmeyer, 2011) and albedo (Qu and Hall, 2006, 2007). The 
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relationship between large scale snow variables and atmospheric circulation indices such as the Arctic Oscillation 
have been used (Furtado et al., 2015). Deciphering specific land model weaknesses may best be achieved by making 
assessment independent of forcing data and/or initial conditions; understanding functional relationships between 
variables provides a likely path.

A further consideration is that of model output time and spatial scale. ILAMB has primarily used monthly mean 
data from land models, often interpolated from their native grid to a standard grid, which can lead to limitations. 
Future output may consider derived diagnostic variables that are integrative or decipher finer timescale processes—
for example, daily runoff from river basins would allow for hydrograph recession analysis that gives more insight to 
surface vs. groundwater runoff processes, or model systems may store the final day-of-year of the seasonal snowpack, 
which might be defined as a 60-day or more continuous snow cover (Slater et al., 2013) or something similar.

Snow cover extent data include the NOAA Climate Data Record based on the Rutgers historic snow extent 
(Robinson et al., 1993) dating back to 1967. More recent, higher-resolution records of snow cover are available: 
NOAA’s Interactive Multisensor Snow data (4 km since 1997) and the NASA EOS era of data (1999–present) using 
MODIS sensors at 500 m resolution (Hall et al., 2006, 2010). At the global level, our knowledge of snow cover is 
fairly good at least in a relative sense (one year compared to another), though exact timing (to the day) in marginal 
snow cover and mountainous regions still contain uncertainty. An example of analysis of snow extent using the 
CMIP5 models was performed by Brutel-Vuilmet et al. (2013), where the emphasis was whether models capture 
the observed multi-decadal trend of decreasing extent in the spring season. Along with area covered, the date of 
final melt can be indicative of melt rate relative to available energy. The choice of metric for assessing snow extent 
can be important; for example, Toure et al. (2016) use the Nash-Sutcliffe Efficiency (NSE) score and correlation 
coefficient (r) for evaluating the time series of snow cover in CLM4. However, for a time series containing a cyclic 
component, NSE and r will return high values so long as the seasonal cycle is reproduced, therefore not elucidating 
model capability.

SWE at the global scale, in the opinion of the author (Slater), remains an unknown quantity for the purposes of 
rigorously verifying models. Station-based interpolations (Brown and Brasnett, 2010) and products applying remote 
sensing techniques (e.g., GlobSno [Pulliainen, 2006]) give broad estimates and may give indications of model results 
that might be largely erroneous but that are not yet of the standard to suggest what it “correct”—this remains a gap 
in our knowledge. Because of poor SWE information at large scales and in mountain regions, there is a long-term 
initiative underway among the snow community to improve this situation, including the advance of satellite sensors 
and coordinated data assimilation systems to NASA’s Decadal Survey. Spatial heterogeneity of snow depth and SWE 
should urge caution when comparing point measurements to gridcell averages; poor comparisons can be made, for 
example with SNOTEL data (Toure et al., 2016).

Functional relationships have been used to assess model abilities. To separate the influence of surface meteorology 
forcing from model structural or parameter error, Slater and Lawrence (2013) used a simple empirical model of 
permafrost driven by surface meteorology of respective CMIP5 models. The relative position and trajectory of 
permafrost diagnosed directly compared to the empirical model can inform whether land models are too warm 
or cold. Similarly, the impact of modeled snow insulation was assessed by looking at differences in air and soil 
temperatures (Koven et al., 2013) and extended to account for snow depths and relative climates (Slater et al., 
submitted).

The International Soil Moisture Network (http://ismn.geo.tuwien.ac.at/ismn/) curates a variety of in situ and 
satellite derived estimates of soil moisture which can be used for assessing modeled water budgeting; e.g., partitioning 
between runoff, evaporation, and storage. Standard comparisons of moisture levels are useful (Xia et al., 2015b), 
although innovative methods to understand sources of simulation uncertainty are even more desirable (Nearing et al., 
2016). Total water storage from gravity anomalies (GRACE) can provide a broader integrative view of model abilities 
(Kim et al., 2009; Swenson and Lawrence, 2015).

Shallow soil temperature data (< 5 m, often < 1 m) suffers from heterogeneity issues, and is often sporadic, poorly 
distributed, and sometimes not reported as a standard variable even when measured. As an example, historic soil data 
from Russia is often measured at disturbed agricultural plots that are not representative of the local vegetation type. 
The rate of heat uptake over time within the terrestrial surface and actual temperatures at depths greater than 10 m 
are available only from a variety of boreholes across many different climate zones, from tropical to polar (Cuesta-
Valero et al., 2016).
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Albedo retrievals from satellites, such as the NASA-sponsored MOD43 series of products (Schaaf et al., 2002), have 
proved useful in assessing prognostic albedo in models as well as detecting weaknesses, including poor representation 
of canopy snow interception (Thackeray et al., 2015).

Also, LS3MIP includes additional experiments using four alternative meteorological forcing data sets: GSWP3 
(Kim et al., in preparation), the Princeton forcing (Sheffield et al., 2006), WFD and WFDEI combined (allowing 
for offsets as needed [Weedon et al., 2014]) and the CRU-NCEP forcing used in TRENDY (Sitch et al., 2015). 
The model outputs will allow assessment of the sensitivity of land-only simulations to uncertainties in forcing 
data. Kim (2010) utilized a similarity index (Ω; Koster et al., 2000) to estimate the uncertainty derived from an 
ensemble of precipitation observation data sets relative to the uncertainty from an ensemble of model simulations for 
evapotranspiration and runoff. It was found the uncertainty of forcing precipitation propagates in a relatively reduced 
way to evapotranspiration and an amplified way to runoff (Kim, 2010; Figure D.3.1).

D.4 LUMIP 
 David M. Lawrence, Elena Shevliakova, and Atul K. Jain
The challenge of evaluating effects of land-use and land-cover change in the CMIP6 Land Use Model 
Intercomparison Project (LUMIP; Lawrence et al., 2016) is threefold:

1. Land use and land cover change (LULCC) is an external forcing that many CMIP6 experiments (e.g., DECK, 
historical, future scenario, and LUMIP) will be using, but the forcing data itself is complex, uncertain, and 
challenging to interpret and use with climate models and ESMs. Analysis of CMIP6 experiments should begin 
with an evaluation of the consistency between the CMIP6 LULCC scenario and its implementation in different 
ESMs (e.g., agricultural areas, extent of different crops, area and amount of wood harvested). Additional 
benchmarks need to be developed for stand-alone LUMIP experiments focused on effects of management 
on physical and biogeochemical states. Evaluation or benchmarking the CMIP6 LULCC reconstruction 
itself is crucial in attributing sources of ESM uncertainty/biases, particularly in regions with a long history or 
intensification of LULCC.

2. ESMs have dramatically different LULCC components, including types of land-use and land-management 
practices. Many LULCC parameters are not informed by data and do not capture historical patterns and practices 
(e.g., fraction of harvested residue and its fate). Furthermore, the relative importance of different types of land use 
and land management (e.g., wood harvest, prognostic crops, irrigation, fertilization, shifting cultivation, pasture 
representation, tilling, etc) and representation of response to disturbances are not fully understood from either 
observational or modeling perspectives.

Figure D.3.1. Uncertainty in simulated evapotranspiration and runoff introduced by different land surface schemes 
in GSWP2 are larger than precipitation uncertainty-induced uncertainty by 28% and 40% in the similarity index (Ω) 
globally.
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3. LULCC affects many land processes and properties. Detection and attribution of LULCC effects are the major 
challenges for both models and observations, including impacts on

 » atmospheric CO2, 
» ecosystem processes and states, 
» hydrology, 
» soil carbon and nutrient biogeochemistry, 
» vegetation dynamics, and 
» surface energy and BGC fluxes.

D.4.1 Land-use Metrics 

A goal of LUMIP is to establish a useful set of model diagnostics that enables a systematic assessment of land use-
climate feedbacks and improved attribution of the roles of both land and atmosphere in terms of generating these 
feedbacks. The need for more systematic assessment of the terrestrial and atmospheric response to land-cover change 
is one of the major conclusions of the LUCID studies. Boisier et al. (2012) and de Noblet-Ducoudré et al. (2012) 
argue that the different land use–climate relationships displayed across the LUCID models highlight the need to 
improve diagnostics and metrics for land surface model evaluation in general and the simulated response to LULCC 
in particular. These sentiments are consistent with recent efforts to improve and systematize land model assessment. 
LUMIP will promote a coordinated effort to develop biogeophysical and biogeochemical metrics of model 
performance with respect to land-use change that will help constrain model dynamics. These efforts dovetail with 
expanding emphasis in CMIP6 on model performance metrics. 

Several recent studies have utilized various methodologies to infer observationally based historical change in land 
surface variables impacted by LULCC or divergences in surface responses between different land-cover types 
(Boisier et al., 2013, 2014; Lee et al., 2011; Lejeune et al., 2016; Li et al., 2015; Teuling et al., 2010; Williams et 
al., 2012). For example, Boisier et al. (2013) took MODIS albedo at 0.05° resolution and derived monthly albedo 
climatologies for croplands and four other land cover types. They then reconstructed the changes in surface albedo 
between preindustrial times and present-day by combining these climatologies with the land cover maps of 1870 
and 1992 used in individual land models that participated in LUCID. The reconstructed albedo changes were then 
compared with the simulated albedo changes in the models. Because the same land cover change map is used in 
the reconstruction and in the simulations, one can infer that the differences in albedo change can be attributed to 
limitations in the parameterization of albedo in the models.

Another promising area for LULCC metrics development is with paired tower site analyses. Paired sites typically 
have one flux tower located in a forest and one in nearby open land (grassland, cropland, or open shrub). Differences 
in fluxes and states for these paired sites can be taken as representative of the impacts of local land cover change 
(deforestation in these cases). Lee et al. (2011), Chen and Dirmeyer (2016), and Burakowski et al. (2016) have all 
utilized paired sites to assess the impact of LULCC on surface temperature and to identify what processes are driving 
changes in surface temperature. Two important findings from these analyses are that daytime and nighttime responses 
differ, even in terms of their sign and that at different sites, the impact of LULCC can be attributed to different causes 
or combinations of causes (e.g., changes in roughness, albedo, and Bowen Ratio). 

Several sources of data and methods with promise for LULCC metric development have been identified, including 
the following:

» Paired tower sites with known LULCC activities

» Food and Agriculture Organization of the United Nations (http://www.fao.org/statistics/databases/en/) and 
national (e.g., USDA Forest Service data, National Agricultural Statistics Service data) statistics

» Inferred impacts derived from any global dataset (e.g., albedo; see Boisier et al., 2013; Lejeune et al., 2016); 
compare nearby pixels that are mostly forest to mostly open land

» Water storage (Landerer and Swenson, 2012) and discharge from perturbed (managed) and unperturbed basins 
(Milly et al., 2014)

» Land use carbon fluxes and their components from bookkeeping models (Houghton, 2013; Richter and 
Houghton, 2011), global carbon project data sets (Le Quéré et al., 2015), RECCAP synthesis project  
(http://www.globalcarbonproject.org/reccap)
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» Impact of LULCC in South and Southeast Asia (Adachi et al., 2011; Cervarich et al., 2016; Tao et al., 2013; Piao 
et al., 2012)

» Impact of LULCC on soil carbon and nitrogen; Review Analysis (Smith et al., 2016a)

» Global aboveground carbon estimates for both forest and non-forest biomes during the past two decades from 
satellite passive microwave observations (Liu et al., 2015)

» Fire emissions (van der Werf et al., 2010)

D.4.2 Land-only Versus Coupled Model Assessment

Importantly, the availability of both land-only and coupled historic simulations in CMIP6 will enable a more 
systematic assessment of the roles of the land and atmosphere in simulated responses to LULCC. With both coupled 
and uncoupled experiments with and without land-use change, LUMIP will be able to systematically disentangle the 
simulated LULCC forcing (i.e., changes in land surface water, energy, and carbon fluxes due to land-use change) from 
the response (i.e., changes in climate variables such as temperature and precipitation that are driven by LULCC in 
surface fluxes).

D.4.3 Subgrid Data Reporting and Analysis

New output data standardization for LUMIP will also enrich and expand analysis of model experiment results. 
Particular emphasis within LUMIP is on archiving subgrid land information in CMIP6 experiments, including 
LUMIP experiments and other relevant experiments from ScenarioMIP, C4MIP, and the CMIP historical simulation. 
In most land models, physical, ecological, and biogeochemical land state and surface flux variables are calculated 
separately for several different land surface types or land management “tiles” (e.g., natural and secondary vegetation, 
crops, pasture, urban, lake, glacier). Frequently, including in the CMIP5 archive, tile-specific quantities are averaged 
and only grid-cell mean values are reported. Consequently, a large amount of valuable information is lost with respect 
to how each land-use type responds to and interacts with climate change and direct anthropogenic modifications of 
the land surface. LUMIP has developed a protocol and associated data request for CMIP6 for selected key variables 
on multiple land-use tiles (i.e., primary and secondary land, crops, pastureland, and urban).

Several recent studies have demonstrated that valuable insight can be gained through analysis of subgrid information. 
For example, Fischer et al. (2012) used subgrid output to show that not only is heat stress higher in urban areas 
compared to rural areas in the present day climate, but also that heat stress is projected to increase more rapidly in 
urban areas under climate change. Malyshev et al. (2015) found a much stronger signature of the climate impact of 
LULCC at the subgrid level (i.e., comparing simulated surface temperatures across different land-use tiles within 
a grid cell) than is apparent at the gridcell level. Subgrid analysis can also lead to improved understanding of how 
models operate. For example, Schultz et al. (2016) showed, through subgrid analysis of CLM, that the assumption 
that plants share a soil column and therefore compete for water and nutrients has the side effect of an effective soil 
heat transfer between vegetation types, which can alias into individual vegetation type surface fluxes. Furthermore, 
reporting carbon pools and fluxes by tiles will enable assessment of land-use carbon fluxes not only with the standard 
method of differencing land-use and no land-use experiments, but also within a single land-use experiment, utilizing 
bookkeeping approaches (Houghton et al., 2012), which allows a more direct comparison of observed and modeled 
carbon inventories.

D.5 MsTMIP 
 Christopher R. Schwalm
The North American Carbon Program (NACP) Multi-scale Synthesis & Terrestrial Model Intercomparison Project 
(MsTMIP) is a coordinated model intercomparison and evaluation effort designed to improve the diagnosis and 
attribution of carbon sources and sinks at local to global scales (Huntzinger et al., 2013). MsTMIP is distinct from 
CMIP because it focuses on the land component of ESMs. There are currently about 20 participating state-of-the-art 
LSMs in MsTMIP; each executed in offline mode using a standardized protocol (Wei et al., 2014a,b). This key design 
tenet of MsTMIP mandates that forcing data, boundary conditions, steady-state spin up, and sensitivity simulations 
are uniform across all models. Thus, inter-model spread is attributable solely to process representations, which permits 
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a skill-to-structure mapping. That is, since biophysical and biogeochemical representations are the only differences 
across models, changes in model skill can be attributed to model structures (Huntzinger et al., 2014).

MsTMIP is divided into two phases. The now-complete Phase I (Huntzinger et al., 2013; Wei et al., 2014a,b) was 
based on a set of retrospective semi-factorial runs where historical time-varying climate, CO2 concentration, land 
cover, and nitrogen deposition are sequentially “turned on” after steady-state. Each model completed a set of five 
runs with the final run having  all factors enabled. Phase I runs were global (0.5° spatial resolution) from 1901 to 
2010 at a monthly time step. Forcing data were based on the CRU-NCEP product with sub-monthly scale variability 
from the NCEP reanalysis merged with the CRU monthly fields (Wei et al., 2014a,b). The Phase I results from 15 
LSMs are available online (Huntzinger et. al., 2016). In Phase I each model run was performed by the corresponding 
modeling team.

Phase II differs from Phase I in several ways. It focuses on the future, from present to the end of the 21st century 
(2011 to 2100), and forcing data are based on downscaled ESM meteorological fields from CMIP5. Each LSM is 
forced with 10 plausible climate futures using all possible combinations of two RCPs (4.5 and 8.5) and five ESMs 
(CMIP5 historical runs) chosen to reflect a range of temperature changes. The Phase I and Phase II forcing data 
boundary is smoothed to remove any discontinuities and to provide for a single time trajectory from 1901 to 2100. 
As the same set of semi-factorial runs is preserved in Phase II, 40 runs are required for each model. There are no 
additional steady-state runs; Phase II transient runs are initialized with the 2010 states from Phase I. In addition, 
models are executed centrally on the NASA JPL Model Farm, which contains a subset of all MsTMIP LSMs run with 
both standardized protocol and output code. The Model Farm offers greater flexibility than relying on separate teams 
to run their models, and it reduces financial, logistical, and interoperability challenges.

To date, MsTMIP simulations were used to (1) diagnose global patterns of soil organic carbon (Tian et al., 2015), 
(2) understand climatic vs. anthropogenic controls on evapotranspiration (Mao et al., 2015), (3) aggregate individual 
model results with benchmark-driven model ensemble integration (Schwalm et al., 2015), (4) quantify the net 
climate effect of the terrestrial biosphere (Tian et al., 2016), and (5) evaluate the impact of climate extremes on 
carbon cycling (Zscheischler et al., 2014). With retrospective Phase I and predictive Phase II simulations, MsTMIP 
can serve as a unified platform to evaluate how model structural differences, key controls of carbon metabolism, and 
plausible climate futures alter future carbon dynamics.

D.6 PLUME-MIP 
 Anders Ahlström
PLUME-MIP addresses the responses of vegetation and land surface models to environmental drivers under current 
and future projections, and attempts to advance the state-of-the-art in attributing modeled carbon cycle responses to 
underlying mechanisms, as represented in the models.

The project is divided into two main tiers as follows:

» Tier 1 involves standard transient simulations using bias-corrected CMIP5 climate outputs for the recent past and 
future under a set of CO2 concentration pathways. The outcomes will be used to evaluate the different responses of 
the terrestrial C cycle to climate projections and CO2 pathways.

» Tier 2 adopts a recently developed transient version of the Traceability Framework (TF) (Xia et al., 2013) to 
identify underlying causes of model differences in their responses to current and future climate forcing. The 
framework is designed to facilitate model intercomparisons by tracing components and their differences across 
models. Using the TF, Tier 2 will focus on locating the main carbon cycle processes that are responsible for causing 
differences among models and between models and data.

Currently Tier 1 simulations are nearly complete, and Tier 2 simulations are being performed or prepared. 
Methodology for applying the transient TF has been developed, tested, and partially published (Ahlström et al., 
2015). In our analysis, we aim to answer two main research questions: (1) what is the relative role of main ecosystem 
processes in inter-model differences today and in the future? and (2) which processes are responsible for model–data 
inconsistencies and biases?
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To answer (1), we will utilize results from Tier 1 and Tier 2 in combination with empirical data products on plant 
productivity, carbon pools, and turnover in a novel and transparent analysis. The transient TF can be used as an 
emulator that perfectly represents the flows of carbon between carbon pools while maintaining the model’s structure. 
This way we can exchange processes (fluxes) between models (e.g., NPP, vegetation turnover, soil respiration rates) to 
identify what processes contribute to inter-model differences.

For (2), we will utilize TF to replace simulated processes with empirically derived data products (e.g., NPP, turnover, 
and respiration rates) and evaluate the resulting carbon pools against empirical datasets. The TF allows us to replace 
one or several processes on which independent data exists and recalculate carbon pools while preserving model 
structure and functioning from remaining processes. The resulting carbon pools will be evaluated against independent 
data using ILAMB benchmarking resources with the overall aim to find the processes (fluxes) and functions 
(e.g., soil respiration rates) responsible for model–data inconsistencies while identifying potential compensation 
between processes.

Both tiers and analysis steps (1) and (2) contribute to the goal of isolating the processes responsible for 
differences between models and their future projections and between models and data, using a transparent and 
systematic methodology.
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Appendix E. 
Integration with Uncertainty 
Quantification Frameworks
E.1 An Uncertainty Quantification Framework  
 Designed for Land Models 
 Maoyi Huang, Zhangshuan Hou, Jaideep Ray, Laura Swiler,  
 L. Ruby Leung
Current-generation land models, such as the Community Land Model (CLM) and the Accelerated Climate Modeling 
for Energy Land Model (ALM), include numerous sub-models and associated parameters. The high-dimensional 
parameter space presents a formidable challenge for quantifying uncertainty and improving Earth system model 
predictions needed to assess environmental changes and risks. In practice, many parameters in land surface models 
are expected to vary from site to site and are poorly estimated or subjectively assigned. There is a strong need to 
calibrate/optimize the parameter values; however, with the high-dimensional parameter space, systematic calibration 
at numerous field sites is mission impossible because of the computational demand and the ill-posed nature of the 
inverse problems.

There have been attempts to calibrate LSMs. Because of their computationally expensive nature, ongoing efforts also 
target the construction of emulators (surrogate models) that map LSM’s outputs to its inputs. The emulators can then 
be used (instead of the LSM itself ) in sensitivity analysis, parameter estimation, propagation of parametric uncertainty 
and other many-query applications. Sargsyan et al. (2014) attempted to construct surrogates for five variables of 
interest from CLM4 with prognostic carbon and nitrogen modules turned on (i.e., CLM4-CN) using Bayesian 
compressive sensing (BCS) in combination with polynomial chaos expansions (PCEs). Müller et al. (2015) used 
an RBF to create a surrogate of the data–model mismatch and estimated 11 parameters of the CLM4.5’s methane 
module using a global optimization method called DYnamic COordinate search using Response Surface models 
(DYCORS) (Regis and Shoemaker, 2007). Gong et al. (2015) used adaptive surrogate-based optimization to perform 
parameter estimation of 12 independent parameters in the CLM deterministically using six observables jointly.

Probabilistic methods, based on Monte Carlo simulations, have been used to calibrate LSMs. (Lo et al., 2010) 
used Monte Carlo techniques to estimate hydrological parameters of Community Land Model (CLM) 3.0, while 
Prihodko et al. (2008) calibrated Simple Biosphere Model version 2.5. Järvinen et al. (2010) and Solonen et al. 
(2012) used multi-chain Markov Chain Monte Carlo (MCMC) methods to address the formidable computational 
cost of calibrating the parameters of a climate model, while Zeng et al. (2013) used the same approach to calibrate 
the parameters of a crop module in CLM version 3.5. Bilionis et al. (2015) used a sequential Monte Carlo method 
to calibrate 10 parameters of the Crop module in CLM4.5. Tian and Xie (2008) used an unscented Kalman filter to 
calibrate CLM 2.0.

Significant progress has been made toward quantifying uncertainty associated with hydrologic parameters in the 
CLM and calibrating those parameters using an uncertainty quantification (UQ) framework. The framework 
features importance sampling, exploratory data analyses, HPC-enabled numerical simulations, classification of a 
complex system into a few relatively homogeneous regions, and Bayesian inversion using Markov Chain Monte Carlo 
techniques. The UQ framework has been applied to flux towers and watersheds under different climate and site 
conditions in the contiguous United States.



105

By performing numerical simulations using an efficient stochastic sampling-based sensitivity analysis approach, 
linear, interaction, and high-order nonlinear impacts of hydrologic parameters in CLM on simulated surface water 
and energy fluxes are analyzed via statistical tests and stepwise backward removal parameter screening at 13 selected 
flux tower sites (Figure E.1.1) and 431 river basins (Figure E.1.2) from the Model Parameter Estimation Experiment 
(MOPEX) in the United States (Hou et al., 2012; Huang et al., 2013; Ren et al., 2016). Based on this analysis,  
a subset of hydrological parameters (4 out of 10 being analyzed) have been identified to have significant impacts  
on latent heat, sensible heat, and runoff generation, and the results are consistent across all sites, as shown in  
Figure E.1.3. The reduction in parameter space through such an analysis establishes the foundation for inverse 
modeling, or parameter calibration. As a first attempt, Sun et al. (2013) implemented a single-chain Markov-Chain 
Monte Carlo (MCMC) inversion procedure with CLM and demonstrated that it was feasible to invert CLM 
hydrologic parameters at the site level, when observed fluxes and streamflow are used to constrain the parameters. 
However, the computational expense of CLM makes a single-chain MCMC method not plausible, as the simulations 
have to be conducted sequentially.

Figure E.1.1. Geographic locations of the selected flux towers. Adopted from Hou et al. (2012).

Figure E.1.2. Classes of the 431 MOPEX basins classified using parameter sensitivity scores with runoff as the response 
variable in the General Linear Model sensitivity analysis. Adopted from Ren et al. (2016).
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To address this issue, there is a need to reduce computational costs and utilizing high-performance computing 
infrastructure. A Surrogate-based Markov chain Monte Carlo (MCMC)-Bayesian inversion approach has been 
developed for CLM and tested at 12 flux tower sites (Huang et al., 2016; Ray et al., 2015). The procedure starts 
with building surrogates using CLM4 simulations driven by perturbed parameter sets using a space-filling quasi-MC 
sampling approach. The surrogates, after careful validation and selection, are then used as computationally efficient 
alternatives to the CLM numerical simulator, for improving the estimates of the hydrological parameters, and 
therefore LH predictions, with quantified uncertainties. Given the large number of MOPEX basins and their wide 
geographic extent, parameter significance scores are used to classify the basins into different classes by grouping basins 
with similar parameter significance patterns into six unique classes. Each MOPEX basin can be assigned to a unique 
class, and then appropriate unknown parameters are to be included in the calibration. The unknown parameters are a 
reduced subset which makes the model calibration/optimization feasible (Ren et al., 2016). Efforts to further alleviate 
computational burdens to the model optimization efforts are on-going by evaluating similarity/transferability of 
parameters within each class.

However, it has been recognized that surrogate-based inversion is intrinsically subject to errors as a result of 
approximating a complex model using simplified functions, not to mention the potential risk of failures in building 
the surrogates due to the complex relationships between model parameters and outputs of interest (Huang et al., 
2016). To address this limitation, a Scalable Adaptive Chain Ensemble Sampling (SAChES) method has been 
developed that seeks to collect the samples required to construct the probability density functions by combining 
the scalability of Differential Evolution Monte Carlo (DE-MC), a genetic algorithm, with the sampling efficiency 
of adaptive Metropolis-Hastings sampling. The core hypothesis is that the parameter space can be efficiently 
searched using a large number of loosely coupled Markov chains. SAChES has been integrated with CESM1.2 (the 
code foundation of ACME) (Swiler et al., 2015). The capability of SAChES to invoke a large number of chains 
simultaneously has its obvious attraction in high-dimensional inversions, i.e., when a gridded field, rather than a 
few model parameters, has to be estimated. Some studies have begun to explore whether SAChES could be used to 
estimate saturation fields using ground penetrating radar measurements, as well as to estimate saturation and porosity 
fields using seismic and electromagnetic response observations (Bao et al., 2016), with potential applications to 
highly spatially resolved models such as the coupling between CLM and the reactive transport code PFLOTRAN 
(Hammond et al., 2014).

To summarize, the global sensitivity analysis and Bayesian inversion procedures are useful tools for parameter 
estimation with uncertainty bounds, as well as for identifying potential model structural errors by extensively 
exploring the parameter space and comparing discrepancies between model predictions and observations. To 
successfully integrate such tools with land models, model reduction techniques are critically needed to make the 
problem tractable. Integrating such tools with the benchmarking datasets available in the International Land Model 
Benchmarking (ILAMB) framework (e.g., data from AmeriFlux network, streamflow gages, data products from 
the Moderate Resolution Imaging Spectroradiometer), would help the community to better constrain land model 
parameters and identifying model structural and parametric uncertainties. Although only being integrated with the 
CLM, the tools are general and therefore portable to other land models.

Figure E.1.2. Classes of the 431 MOPEX basins classified using parameter sensitivity scores with runoff as the response 
variable in the General Linear Model sensitivity analysis. Adopted from Ren et al. (2016).
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E.2 Use of Emulators in Uncertainty Quantification  
 George S. Pau
Quantifying uncertainties in land surface models (LSMs) is an important aspect of benchmarking exercises. 
Since observation data is inherently uncertain, one potential robust verification approach involves comparing 
the probability density functions of the observation data and the model outputs. The difficulty of quantifying 
the uncertainties in the observation data has been addressed elsewhere in this report. Here we focus on the task 
of quantifying the probability density functions of the model outputs. In particular, we consider the case where 
the nonlinearity in the model response necessitates the use of robust uncertainty quantification (UQ) techniques, 
especially Monte Carlo (MC) methods. Accurate statistical descriptions of model outputs also allow for more 
informative comparison between different LSMs.

MC methods require many evaluations of a LSM, each of which can be computationally challenging if modeled at 
the scale of the observation data. Brute force application of MC methods is typically infeasible even with existing 
high-end computing ecosystems because of the significant computational resources required. There is thus a need 
to develop MC methods that do not require a large number of LSM evaluations. Fortunately, there are many recent 
advances in MCMC methods and particle-based MC methods. Some new efficient methods include implicit particle 
filter (Chorin and Tu, 2009), stochastic Newton MCMC method (Martin et al., 2012), and MCMC methods that 
use Gibbs samplers (Kuczera et al., 2010), differential evolution samplers (Laloy and Vrugt, 2012), affine invariant 
ensemble samplers (Goodman and Weare, 2010) and surrogate-based samplers (Goodwin, 2015; Ray et al., 2015). 
These methods have varying degrees of parallelism that affect their efficient deployments on supercomputers. Apart 
from the surrogate-based samplers, the number of LSM evaluations is still typically very large.

In surrogate-based MC methods, surrogate models, built based on a limited number of LSM evaluations, are used 
as efficient emulators of the LSM. An offline-online computational framework allows UQ analyses to be performed 
efficiently at the desired spatial and temporal scales using surrogate models (online stage) through an amortization 
of the construction cost of these models (offline stage). The offline stage is computationally intensive because of the 
need to obtain outputs from a large number of LSM evaluations. The construction of the surrogate models from 
these outputs can also be computationally and memory intensive. An additional advantage of this computational 
framework is its efficient utilization of heavily shared high-performance computing resources. By executing the offline 
stage during the off-peak cycles, we are able to execute the online stage even during peak cycles. We can also execute 
the online stage on smaller machines with smaller user base and thus better throughput.

There are many approaches to constructing an appropriate surrogate. However, this task differs from the data mining 
challenges in the industry. First, we are emulating computationally expensive numerical models that are typically 
deterministic. We need a strong theoretical framework for using statistical emulators to describe results from these 
numerical models. Second, since we are emulating physical systems, outputs from the surrogate models must obey 
the constraints inherent in the physical systems. Third, we are typically data-limited; although each high-resolution 
numerical simulation produces a lot of data for a given scenario, the number of scenarios that we simulated is 
relatively small.

Several promising surrogate-modeling methods are currently being used to emulate the output of LSMs. For scalar 
quantities, popular methods include Gaussian process regression (Drignei et al., 2008; Edwards et al., 2011; Holden 
et al., 2010; Olson et al., 2012; Ray et al., 2015; Rougier et al., 2009), and polynomial chaos expansion (Liu et al., 
2016b; Ray et al., 2015; Sargsyan et al., 2014). However, these methods cannot be directly applied to emulate field 
solutions due to the sheer number of outputs from high-resolution LSMs. A typical approach combines dimensional 
reduction techniques, such as proper orthogonal decomposition, with the scalar approaches mentioned above 
(Higdon et al., 2008; Liu et al., 2016a; Wilkinson, 2011). However, statistical models may have difficulties capturing 
the complex and nonlinear behavior of a LSM. In these cases, a coarse resolution numerical model can be used as a 
surrogate model. Downscaling techniques are then used to downscale the resulting outputs onto a high-resolution 
grid (Pau et al., 2014, 2016; Walton et al., 2015).
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The use of surrogate models within an UQ framework poses several challenges. In particular, the required accuracy 
of a surrogate model depends on the chosen UQ method. For example, a two-stage Monte Carlo method (Ma et 
al., 2008) allows the use of a surrogate model with lower fidelity since it is only used to guide the selection of the 
parameters for performing a full model evaluation. However, a poorly constructed surrogate model can lead to a large 
number of full model evaluations, severely reducing the benefit of using a surrogate model. Directly substituting the 
full model in a MC method by a surrogate model will provide greater efficiency gain. However, the analysis can be 
meaningless if the surrogate model failed to adequately and consistently give accurate predictions within the range of 
uncertainty of the parameters (Goodwin, 2015). Increasing the number of training samples can increase the accuracy 
of the surrogate models but it reduces the net computational gains. A potential strategy is to choose a MC method 
that better constrains the parameter space in which the surrogate model needs to be accurate, thus reducing the 
number of training samples required (Liu et al., 2016b).

In conclusion, surrogate models have potential to reduce the computational cost of a MC method. However, 
more research is still needed to ensure the use of surrogate models within a MC method is robust, efficient, and 
theoretically sound.

E.3 Uncertainty Quantification in the ACME  
 Land Model: Summary 
 Daniel M. Ricciuto, Khachik Sargsyan, Dan Lu, Jiafu Mao,  
 Peter Thornton
Uncertainty about land surface processes contributes to a large spread in model predictions about the magnitude 
and timing of climate change in the 21st century. LSM’s incorporate a diverse array of processes across various 
temporal and spatial scales, and they include a large number of uncertain parameters. Traditionally, land surface 
model output uncertainty has been estimated using multimodel ensembles such as CMIP5 (Friedlingstein et al., 
2014b) or MsTMIP (Huntzinger et al., 2013), which combine uncertainties related to model structure, boundary 
conditions, and parameters. Improved understanding about the sensitivity of model outputs to specific parameters 
and processes, as well as the contribution of parametric uncertainties to overall prediction uncertainty, is of critical 
importance not only for directing future model development and measurements, but also for increasing the accuracy 
of future predictions.UQ methods that perform such analyses have advanced considerably in the last decade and 
may be successfully applied to complex LSMs. Ultimately, land-surface observations and benchmarks, including 
those from ILAMB, could be included in a UQ framework to optimize model parameters and further improve 
model predictions.

Global sensitivity analysis (GSA) or variance-based decomposition is a popular method to quantify the effects 
of model parameter uncertainties on specific quantities of interest (QoIs). Although a number of GSA methods 
exist (e.g., Sobol, 1993; Saltelli et al., 2006), many simulations are generally required, which is rapidly becoming 
computationally infeasible as the number of parameters increases. In complex land surface models, simpler one at 
a time (OAT) approaches, which vary parameters around nominal values of variables and do not require very large 
ensembles, have been applied (e.g., Zaehle et al., 2010). However, these results can be misleading if parameter 
interactions are important or if sensitivities vary significantly over the full multidimensional parameter space (Saltelli 
et al., 2004). Surrogate models, which use a set of basis functions to reproduce the behavior of a given model for 
a given QoI, can be used to estimate sensitivities with low computational cost. These surrogate models are often 
constructed using polynomial chaos (PC) expansions, which have gained popularity recently as convenient machinery 
for uncertainty representation and propagation (Ghanem and Spanos, 1991; Le Maitre and Knio, 2010), allowing 
analytical extraction of both single-parameter and joint-interaction sensitivities. However, for high-dimensional 
problems with many model parameters, the construction of the surrogate still requires an infeasible number of model 
evaluations because the number of basis terms is prohibitively large. This problem is resolved in this study by using 
a new algorithm that iteratively searches for the best set basis terms. The new algorithm, Weighted Iterative Bayesian 
Compressive Sensing (WIBCS), builds upon earlier PC surrogate-based sensitivity analysis (Sargsyan et al., 2014).
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Here we apply this new method to perform GSA at 96 FLUXNET sites (Figure E.3.1) using the initially committed 
version 0 of the DOE Accelerated Climate Model for Energy (ACME), the land component of which is largely based 
on the CLM 4.5 (Oleson et al., 2013). These 96 sites cover a large range of climates, plant functional types, and other 
land surface characteristics. A total of 65 model parameters related to biogeophysics and biogeochemical cycling were 
varied randomly within uniform ranges justified by literature or expert judgment. In order to construct site-specific 
surrogate models, 3000 model simulations were performed for each site on the Titan supercomputer at the Oak 
Ridge Leadership Computing Facility, examining 5 QoIs: gross primary productivity, latent heat flux, net ecosystem 
exchange, vegetation biomass and soil organic matter carbon. We find for all PFTs, generally 15 or fewer parameters 
drive most of the variance in the outputs. Within a PFT for a given output, generally the same parameters appear as 
sensitive at each site while differences in parameters are evident among PFTs and different outputs (Figure E.3.2). 
The sensitivities of some parameters vary as a function of climate variables such as temperature or precipitation. This 
sensitivity analysis will serve as the basis for more focused, lower-dimensional studies leading to parameter calibration 
and improved land-surface model prediction at global scales.

Figure E.3.1. Sites used in the global sensitivity analysis for the ACME land model at FLUXNET sites. Plant functional 
types at each site as used in the model are indicated.

Initial efforts to calibrate the ACME land model have been specific to individual eddy covariance or experiment sites, 
focus on a limited number of parameters, and do not estimate posterior uncertainties. We found that, by using 1 year 
of net ecosystem exchange (NEE) data from the Missouri Ozark flux site to optimize 14 model parameters, we were 
able to achieve a 30% reduction in root mean squared error in NEE over 2 subsequent years. However, when the 
calibrated parameters were used at the 2 similar deciduous forest sites Morgan Monroe State Forest and University 
of Michigan Biological Station, there was no increase in predictive skill compared to the model default parameters. 
However, when multiple QoIs are used in a calibration framework, the results are more promising (Mao et al., 2016; 
Ricciuto et al., 2011). Using the ILAMB framework, which contains a diverse set of data and benchmarks, for model 
calibration may significantly enhance the predictive skill of land surface models and begin to help explain or resolve 
the differences among models.
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E.4 The Predictive Ecosystem Analyzer (PEcAn):  
 A Community Tool to Enable Land Model  
 Synthesis, Evaluation, and Forecasting 
 Shawn Serbin, Michael Dietze, and the PEcAn Team
Process models are our primary tool for synthesizing our understanding of terrestrial ecosystems and projecting the 
impact of global change on ecosystem services associated with carbon, energy and water fluxes, and storage. Recently 
the use of models as a scaffold for data-driven synthesis has expanded and there is increasing interest in formal 
model–data experimentation (ModEx) frameworks to quantify uncertainties, evaluate models, enable the integration 
of observations, and guide model developments (Dietze et al., 2013). However, models remain inaccessible to most 
ecologists, in large part due to the informatics challenges of managing the flows of information in and out of such 
models. Moreover, the ecological sciences have witnessed an explosion in the amount and types of data that can be 
brought to bear on the potential responses of the terrestrial C, water, and energy cycles and biodiversity to global 
change. Many of the most pressing questions about global change are not limited by the need to collect new data as 
much as by our ability to synthesize and efficiently use existing data (Luo et al., 2011).

Figure E.3.2. Main effect sensitivity indices as a function of plant functional type (PFT) for gross primary productivity 
(GPP) for the five most sensitive parameters: the temperature sensitivity of maintenance respiration (q10_mr), the 
fine root to leaf allocation ratio (froot_leaf), the specific leaf area at the top of the canopy (slatop), the fine root 
carbon:nitrogen ratio (frootcn), and the fraction of leaf nitrogen in RuBisCO (flnr). Error bars indicate the standard 
deviation of the sensitivity index across multiple sites within a plant functional type.
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Because no one measurement provides a complete picture of terrestrial ecosystems, multiple data sources must be 
integrated in a sensible manner. Process-based models represent an ideal framework for integrating these data streams 
because they represent multiple processes at different spatial and temporal scales in ways that capture our current 
understanding of the causal connections across scales and among data types. Three components are required to bridge 
this gap between the available data and the required level of understanding: 1) state-of-the-art ecosystem models, 
2) a workflow management system to handle the numerous streams of data, and 3) a data assimilation statistical 
framework to synthesize the data with the model.

Managing the communication between models and data involves three distinct challenges: 1) dealing with the volume 
of big data, 2) processing unstructured and uncurated long tail data, and 3) managing uncertainties in model–data 
comparisons and formal data–model assimilation. Finally, model development has long been an academic cottage 
industry, with different models lacking compatible formats for inputs, outputs, and settings. This has lead to 
redundant efforts and minimal reproducibility. As a result, the pace of model improvement has typically been slow. 
To address these challenges in modeling and model evaluation our group has developed the Predictive Ecosystem 
Analyzer (PEcAn, http://pecanproject.org/), a scientific tool box designed to automate many of the tasks and 
challenges required for conducting model–data ecoinformatics, which makes ecosystem modeling more accessible, 
analyses more automated and repeatable, and facilitates the evaluation of model projections, uncertainties, data-
model fusion, forecasting, and decision support (Figure E.4.1). Model uncertainty quantification and propagation 
are a central part of PEcAn’s design, which takes a Bayesian approach of treating model parameters and predictions 
as probability distributions and updating these distributions as new information becomes available (LeBauer et al., 
2013; Dietze et al., 2014). 

Figure E.4.1. Schematic representing the PEcAn framework for model–data integration and uncertainty quantification 
(LeBauer et al., 2013; Dietze et al., 2014). PEcAn provides a number of tools for standardization of model inputs and 
outputs, provenance tracking to enable repeatable and transparent analyses, distributed network and web accessible 
interface, and well as general reusable tools for extraction, analysis and visualization.

PEcAn users interact with models through an intuitive Google-Map-based interface (Figure E.4.2) and standardized 
file formats for model inputs (e.g., meteorological drivers, initial conditions), benchmarks, and outputs. 
Standardization allows the development of common, reusable tools for processing inputs, visualizing outputs, and 
automating the suite of analyses available within PEcAn. In addition, PEcAn includes state-of-the-art Hierarchical 
Bayesian tools for model parameterization, data assimilation, UQ and variance decomposition (VD). In addition to 
these tools, PEcAn leverages a PostGIS database network (Figure E.4.3; https://www.betydb.org/) to track all inputs, 
outputs, and model runs, greatly increasing reproducibility and reliability. Within the PEcAn network, the database 
syncs all results and facilitates file sharing to allow models to talk to each other and enables the community to 
effectively analyze many models distributed across a global network, thereby increasing the ability to conduct multi-
model, multi-institutional model comparisons, synthesis, and evaluation activities.
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Figure E.4.2. The PEcAn framework provides a simple web-based graphical user interface (GUI) that leverages Google 
maps and PHP to link to the core PEcAn tools and PostGIS database (Figure E.4.1). Each node of the PEcAn framework 
(Figure E.4.3, this example from https://modex.bnl.gov/) serves up this interface which also serves to link model runs 
and results across the network. From this interface users can select sites, models, inputs, analyses (e.g., ensemble, UQ, 
data assimilation) and examine outputs with built in diagnostic plots or through an interactive R Shiny interface.

Figure E.4.3. An example status map (availible at https://pecan2.bu.edu/pecan/status.php) showing the current PEcAn 
network. Each node of the network shares data within the institutions database, model run history, and results.
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Core components of the PEcAn framework 
include model parameterization and the 
quantification, propagation, and analysis of 
uncertainties (LeBauer et al., 2013; Dietze et 
al., 2014). These tools facilitate the efficient 
parameterization of models combining expert 
knowledge, trait observations, and field data 
to constrain plant functional types (PFTs). 
Within PEcAn the model uncertainty analysis 
workflow follows three automated steps: 
1) a hierarchical Bayesian meta-analysis to 
summarize observational trait data and constrain 
ecosystem model parameters (Figure E.4.4), 2) a 
parameter sensitivity analysis, and 3) a variance 
decomposition analysis that uses the outputs 
from the first two steps to partition predictive 
uncertainty into the contributions from different 
model parameters. The workflow can also be 
repeated, without the first step, after iterative 
rounds of parameter data assimilation to assess 
the contribution of different data constraints 
to uncertainty reduction. A detailed 
description of this workflow can be found 
in LeBauer et al. (2013).

Following the meta-analysis step, the 
PEcAn model sensitivity analysis consists 
of perturbations to the model parameters 
to evaluate how a specific model output 
(for example net primary productivity) 
changes as the parameter changes. The 
model perturbations are based on the 
quantiles of the parameter’s posterior 
distribution, such that each parameter is 
moved in proportion to its uncertainty 
(Figure E.4.5). The quantiles are flexible 
and can be chosen by the user. The 
response function (i.e., model output 
as a function of a parameter value) for 
each parameter within each PFT is then 
approximated using a spline.

The PEcAn variance decomposition 
analysis estimates the uncertainty in 
model predictions (outputs) associated 
with each model parameter (inputs). 
A Monte Carlo generalization of the 
Delta method is used by transforming 
the posterior parameter distribution 
through the spline sensitivity function 
(Figure E.4.5). Because the predictive 
uncertainty is directly a product of 
parameter uncertainty and model sensitivity, these quantities are also automatically provided within the PEcAn UQ 
workflow (e.g., Figure E.4.6). To allow easier comparisons among variables, parameter variance and model sensitivity 
are expressed in dimensionless form as the posterior coefficient of variation and elasticity (sensitivity normed by both 
the parameter and output means), respectively. Moreover, PEcAn provides the predictive uncertainties associated with 

Figure E.4.4. Example PEcAn Bayesian meta-analysis result 
for specific leaf area (SLA, m2 kg-1). (adapted from LeBauer 
et al., 2013). The curves show the prior (gray) and posterior 
(black) distributions of SLA as selected from the PEcAn 
database (https://www.betydb.org/) for the perennial C4 grass 
switchgrass (Panicum virgatum). Data from plants grown under 
an experimental treatment are presented in gray while data 
from field-grown plants under control treatments are in black. 
The posterior distribution is then used in the PEcAn uncertainty 
analysis to to generate the ecosystem model posterior based on 
the selected trait quantiles (Figure E.4.5).

Figure E.4.5. Adapted from Dietze et al., (2014). Example uncertainty 
analysis for the 10 year mean NPP response of a typical temperate mid-
successional hardwood plant functional type to the Ball-Berry stomatal 
slope parameter (Leuning, 1995). The probability density on the x-axis 
(green shaded area) captures the uncertainty in the stomatal slope 
parameter as estimated by the PEcAn Bayesian meta-analysis  
(Figure E.4.4). The solid diamonds represent the sensitivity analysis, 
depicting NPP projections using the Ecosystem Demography model  
(ED v2.2; Medvigy et al., 2009) for different values of stomatal 
slope, and the solid line is a spline fit to these points. The predictive 
uncertainty in NPP due to stomatal slope is represented by the 
probability density on the y axis (red shaded area), which is generated 
automatically within PEcAn by transforming the parameter distribution 
through the spline sensitivity function. Within PEcAn the partial 
variance is the variance of this predictive distribution divided by  
the sum of the variances across all parameters. 
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Figure E.4.6. Example PEcAn variance decomposition results presented for model runs before (gray) and following 
(black) the updating of model parameter estimates with species-level data from a PEcAn meta-analysis. Parameter 
Uncertainty: Uncertainty associated with each parameter is presented as the coefficient of variation and the degree 
to which some parameters have been constrained by species-level data is indicated by the reduction in CV in the 
black compared to the gray bars. Sensitivity: The sensitivity of modeled output to select parameters is presented as 
elasticity (normalized sensitivity; an elasticity of 1 indicates that model output will double when the parameter value 
doubles). Output Uncertainty: The contribution of each parameter to model uncertainty. This is a function of both the 
parameter variance and sensitivity. Parameters with both large CV and elasticity have the highest uncertainty.

each model parameter as the proportion that each variable contributes to the overall model predictive variance to 
enable direct comparisons across models, model parameters, and different model outputs.

Importantly, the results of the PEcAn uncertainty analysis workflow provide an understanding of the dominant 
drivers of uncertainty for outputs of interest (e.g., NPP). The information provided by PEcAn can be used to guide 
data synthesis, field campaigns, and Bayesian calibration. For example, an uncertainty analysis of the Ecosystem 
Demography model (ED2; Medvigy et al., 2009) across seventeen PFTs (Dietze et al., 2014), identified consistent 
patterns in the parameters driving model uncertainty (Figure E.4.7). In addition, the UQ/VD tools within PEcAn 
have been used to explore the impact of uncertainties in canopy radiative transfer on the projections of ED2 carbon, 
water, and energy fluxes and storage (Figure E.4.8; Viskari et al., in prep). This ongoing work is highlighting the 
need for better constraint on the representation of canopy radiative transfer within models to reduce uncertainties in 
associated processes such as photosynthesis.

An additional core component of the PEcAn framework, which is highly relevant to ILAMB and other model 
evaluation, benchmarking, and calibration activities, are the formal model–data assimilation workflows. Within 
PEcAn, users can make use of both parameter and state data assimilation with a range of approaches and algorithms. 
Parameter data assimilation (PDA) is used to update prior model parameter distributions based on a Likelihood 
function that quantifies how the error between model outputs and observed data changes as parameters are varied 
(Shiklomanov et al., 2016). By contrast, model state-variable data assimilation (SDA) uses observations (with their 
associated uncertainties) to constrain model states (e.g., vegetation composition, leaf area index, carbon stocks; e.g., 
Viskari et al., 2015) instead of model parameters. The core of SDA is the forecast/analysis cycle. In the forecast step 
the model states are predicted forward with uncertainties. In the analysis step, the model forecast is treated as the 
prior and updated based on the Likelihood of new observations (Figure E.4.9). Following the integration of data 
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Figure E.4.7. Example ED2 multi PFT multi biome UQ synthesis 
conducted within the PEcAn framework (Adapted from Dietze et 
al., 2014). This example illustrates what parameters still dominate 
model uncertainty in NPP following a trait meta-analysis to constrain 
model parameters. It was found that the priority for improved model 
representation and parameterization was growth respiration, but also 
bulk water conductance from the soil, leaf stomatal slope, the quantum 
efficiency of photosynthesis, and plant mortality also dominated the 
model uncertainty across the PFTs.

the total forecast uncertainty is lowered 
than that from either the model or data 
alone. In addition, when conducted over a 
region, locations without observations are 
updated based on their covariances with 
measured locations. Similarly, covariances 
among modeled states are also used to 
update unobserved model state variables 
(e.g., the relationship between canopy 
cover, a remotely sensed property, and 
aboveground biomass). Taking a Bayesian 
approach to data assimilation within 
PEcAn allows for an iterative approach 
to both parameter and state assimilation, 
where analyses can be updated when new 
data is added without having to rerun 
analyses from scratch.

A priority highlighted in this report is the 
capacity to benchmark against and directly 
assimilate remotely sensed observations, 
such as surface reflectance. Remote sensing 
observations can be used to track seasonal 
and inter-annual changes in vegetation 
structure and function (Schmid et al., 
2015). While existing benchmarks focus 
on comparing model outputs to derived 
data products, an important alternative 
is for models to output a full spectral 
signature. This “sensor simulator” 
approach (e.g., Figure E.4.10) would 
enable the direct comparison of model 
output to remote sensing observations 
(from leaf to regional scales) which 
also assures a consistency between the 
terrestrial biosphere model (TBM) 
output and the data, as data derived 
from remote sensing products (e.g., LAI) 
inevitably involves assumptions that are 
rarely identical to the assumptions of the 
TBM. Moreover, this approach facilitates 
more rapid inclusion of new data as it 
becomes available since it does not require 
the generation of derived data products 
(and the associated uncertainties that are 
often difficult to adequately quantify) 
and can easily be applied to sensors as 
they come online. Importantly, PEcAn 
already has this functionality for the 
ED2 model (Figure E.4.10; Viskari et 
al, in prep) which could be expanded to 
include other TBMs as needed. Coupling 
this functionality with ILAMB would 
further enable the coordination of model 
benchmarking and synthesis activities that 

Figure E.4.8. Example PEcAn variance decomposition of ED2 canopy 
albedo showing the impact of uncertainty in model radiative 
transfer parameterization including leaf and stem optical properties, 
orientation, and clumping factors for early, mid, and late hardwood 
broadleaf PFTs in the first year (full) and tenth year (shaded) of 
the simulation. These results show the importance of evaluating, 
benchmarking, and constraining underlying processes and structures 
such as light harvesting and utilization as well as the more commonly 
explored outputs such as plant growth, dynamics, and seasonality / 
LAI. Adapted from Viskari et al., (in prep) and funded by NASA TE 
#NNX14AH65G. 
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have been identified as a critical need by 
the modeling community.

There are several important ways the 
ILAMB and PEcAn projects could 
collaborate and share tools, resources, 
and workflows for analyzing and 
benchmarking models at the site and 
regional scales. A key strength of the 
PEcAn package is the strong focus on the 
cyberinfrastructure, scientific workflows, 
provenance tracking, and on-demand 
multi-model synthesis capabilities. For 
example, the PEcAn network contains 
greater than ten ecosystem models that 
can be run locally or through the web 
interface one-at-a-time or together to 
produce a custom model intercomparison 
project (MIP). Furthermore, a number 
of additional models are in the process 
of being integrated, which consists of 
developing the software wrappers to 
manage and standardize the flows of 
information into and out of each model. 
This allows end-users the ability to 
easily run site-level/multi-site model/
multi-model simulations and perform 
experiments that typically require 
significant investments in software, 
hardware and personnel. On the 
other hand, ILAMB has strong model 
benchmarking, diagnostics, and model 
evaluation tools that could be leveraged 
by other tools such as PEcAn. In addition, 
visualization tools within ILAMB are 
useful outside of the ILAMB package. 
Furthermore, the tools within ILAMB 
to quantify changes in model output 
due to code updates, initial conditions, 
or meteorological drivers are key for 
frameworks such as PEcAn since they 
provide the capability to understand 
different sources of uncertainty beyond 
model parameters and structure. 
Therefore, coupling ILAMB and PEcAn 
into a synthetic virtual framework would serve to significantly expand the model evaluation capabilities available to 
the community and avoid any potential redundancies in software development. Importantly ILAMB has historically 
been focused on the Earth system models (ESMs) at the centennial scale but is shifting focus to include regional 
and site-level evaluation with a more process-oriented focus, which was highlighted as an important need at this 
workshop. The ability to leverage tools within ILAMB and PEcAn would provide a framework for conducting shorter 
timescale but focused model benchmarking activities, including the leveraging of the existing and/or proposed 
ILAMB metrics such as functional relationships. Finally, a key recommendation for ILAMB was to provide model–
data assimilation capabilities to facilitate observationally constrained model hindcasting in order to produce the 
best initial conditions for future forecasts. PEcAn already contains a suite of tools for parameter and state variable 
assimilation that could be leveraged in the future.

Figure E.4.9. Simplified example of the PEcAn state data assimilation 
(SDA) forecast/analysis cycle used to inform model projections within 
PEcAn. Adapted from Dietze 2017 Ecological Forecasting.

Figure E.4.10. Example of the use of an “sensor simulator” within 
a TBM (in this case ED2) to facilitate direct assimilation of and/or 
benchmarking against remote sensing observations within the PEcAn 
framework (Viskari et al., in prep). In this approach the output TBM 
spectral signature is based on the internal model structure (i.e. canopy 
biomass, height, RT properties) and compared with comparable 
remote sensing observations (i.e. surface reflectance, albedo). This 
allows for direct comparison and evaluation of associated processes 
such as photosynthesis, energy balance, surface temperature and 
evapotranspiration as well as identify uncertainties and areas to target 
for model improvement.
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Appendix F. 
ILAMB 2016 Workshop Materials
F.1 Agenda
May 16–18, 2016, DoubleTree by Hilton Hotel Washington DC 
1515 Rhode Island Avenue, NW, Washington, DC 20005-5595, USA

Monday, May 16, 2016

7:00 Breakfast        Ballroom Lobby

8:00 Welcome, Introductions, and Safety – Renu Joseph    Terrace Ballroom
 8:00 Welcome and Safety – Renu Joseph and Dorothy Koch 
 8:05 U.S. Dept. of Energy (DOE) Research – Sharlene Weatherwax 
 8:15 DOE Climate Research Priorities – Gary Geernaert 
 8:25 DOE RGCM Program – Renu Joseph 
 8:35 DOE ESM Program – Dorothy Koch 
 8:45 Biogeochemistry–Climate Feedbacks SFA – Forrest M. Hoffman 
 8:55 Accelerated Climate Modeling for Energy (ACME) – William J. Riley 
 9:05 Workshop Charge and Reporting – James T. Randerson

9:10 Plenary Presentations on Benchmarking Tools – David M. Lawrence  Terrace Ballroom
 9:10 P.1 Protocol for the Analysis of Land Surface models (PALS) – Gab Abramowitz 
 9:20 P.2 PLUMBER: PALS Land sUrface Model Benchmarking Evaluation pRoject – Martin Best 
 9:30 P.3 Towards efficient and systematic model benchmarking in CMIP6 – Peter Gleckler 
 9:50 P.4 Land surface Verification Toolkit (LVT): A formal benchmarking and  
  evaluation framework for land surface models – Sujay Kumar 
 10:10 P.5 The International Land Model Benchmarking (ILAMB) Package – James T. Randerson,  
  Forrest M. Hoffman, and David M. Lawrence

10:30 Morning Break        Ballroom Lobby

11:00 Plenary Discusson on Model Evaluation – Gretchen Keppel-Aleks   Terrace Ballroom
 11:00 Summary of Evaluation Methods at Modeling Centers – Gretchen Keppel-Aleks 
 11:15 Discussion on Model Evaluation – David M. Lawrence

11:50 Plenary Presentations on Emergent Constraints and Evaluation Metrics I  Terrace Ballroom
 11:50 P.6 Evaluation of vegetation cover and land-surface albedo – Victor Brovkin 
 12:10 P.7 Judging the dance contest – Metrics of land–atmosphere feedbacks – Paul Dirmeyer

12:30 Working Lunch        Ballroom Lobby

13:30 Metrics Breakout Group Meetings I – James T. Randerson 

  Ecosystem Processes and States – Nancy Y. Kiang and Ben Bond-Lamberty Terrace Ballroom 
  Hydrology – Randal Koster and Hongyi Li    Directors Room 
  Atmospheric CO2 – Gretchen Keppel-Aleks and William J. Riley  Congressional Room

15:00 Afternoon Break        Ballroom Lobby

15:20 Metrics Breakout Group Meetings II – Forrest M. Hoffman

  Soil Carbon and Nutrient Biogeochemistry – Gustaf Hugelius  
  and Jinyun Tang       Terrace Ballroom 
  Surface Fluxes (Energy and Carbon) – Scott Denning and Dan Ricciuto Directors Room 
  Vegetation Dynamics – Rosie Fisher and Chonggang Xu   Congressional Room
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16:50 Breakout Group Reports (1–3 datasets, 1–3 new metrics, and bibliographies)  Terrace Ballroom
 16:50 Ecosystem Processes and States 
 16:55 Hydrology 
 17:00 Atmospheric CO2 

 17:05 Soil Carbon and Nutrient Biogeochemistry 
 17:10 Surface Fluxes (Energy and Carbon) 
 17:15 Vegetation Dynamics

17:20 Poster Lightning Presentations      Terrace Ballroom

18:00 Poster Session and Reception

  Posters A.1 through A.8      Terrace Ballroom 
  Posters B.1 through B.8      Directors Room 
  Posters C.1 through C.8      Congressional Room

20:00 Adjourn for the Day

Tuesday, May 17, 2016

7:00 Breakfast        Ballroom Lobby

8:00 Keynote Presentation: P.8 Role of flux networks in benchmarking land atmosphere  
 models – Dennis Baldocchi       Terrace Ballroom

8:30 Plenary Presentations on MIP Benchmarking Needs – William J. Riley  Terrace Ballroom
 8:30 P.9 Overview of the Coupled Model Intercomparison Project Phase 6  
  (CMIP6) Experimental Design and Organisation – David M. Lawrence 
 8:45 P.10 Assessing feedbacks for the Coupled Climate–Carbon Cycle Modeling  
  Intercomparison Project (C4MIP) – Forrest M. Hoffman 
 9:00 P.11 The Land Surface, Snow and Soil moisture Model Intercomparison  
  Project (LS3MIP) and Global Soil Wetness Project Phase 3 (GSWP3) – 
  Hyungjun Kim 
 9:15 P.12 Landuse and landcover change model performance metrics for  
  LUMIP – David M. Lawrence 
 9:30 P.13 Multiscale Synthesis & Terrestrial Model Intercomparison Project:  
  From cohort to insight – Christopher R. Schwalm 
 9:45 P.14 Processes Linked to Uncertainties Modelling Ecosystems  
  (PLUMEMIP) – Anders Ahlström 
 10:00 Discussion – Peter Gleckler

10:30 Morning Break        Ballroom Lobby

11:00 Plenary Presentations on Emergent Constraints and Evaluation Metrics II  Terrace Ballroom
 11:00 P.15 New benchmarks for northern high latitudes – Charles D. Koven 
 11:15 P.16 Permafrost Benchmarking System (PBS) – Kevin Schaefer

11:30 Breakout Groups on CMIP6 Evaluation Priorities (pre-lunch) – Gretchen Keppel-Aleks

  C4MIP – James T. Randerson and Charles D. Koven   Terrace Ballroom 
  LS3MIP – Jiafu Mao and Andrew Slater    Directors Room 
  LUMIP – Elena Shevliakova and Atul K. Jain    Congressional Room

12:30 Working Lunch        Ballroom Lobby

11:00  Breakout Groups on CMIP6 Evaluation Priorities (post-lunch) – Gretchen Keppel-Aleks

  C4MIP – James T. Randerson and Charles D. Koven   Terrace Ballroom 
  LS3MIP – Jiafu Mao and Andrew Slater    Directors Room 
  LUMIP – Elena Shevliakova and Atul K. Jain    Congressional Room
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14:00 Breakout Group Reports (1–3 datasets, 1–3 new metrics, and bibliographies)  Terrace Ballroom
 14:00 C4MIP 
 14:10 LS3MIP 
 14:20 LUMIP

14:30 Keynote Presentation: P.17 Theory-enabled model evaluation  
 and improvement – Yiqi Luo       Terrace Ballroom

15:00 Global Synthesis Discussion – Sha Zhou and Chris Lu    Terrance Ballroom

15:15 Afternoon Break        Ballroom Lobby

15:45 ILAMB v1 Package Demonstration and Application – Mingquan Mu  Terrace Ballroom

16:45 ILAMB v2 Package Tutorial / Training Session – Nathan Collier   Terrace Ballroom

18:00 Dinner on your own       Downtown DC

Wednesday, May 18, 2016

7:00 Breakfast         Ballroom Lobby

8:00 Plenary Presentations on Emergent Constraints and Evaluation Metrics III Terrace Ballroom

 8:00 P.18 Evaluating the simulations of global nutrient cycles: Available  
  observations and challenges – Ying-Ping Wang 
 8:20 P.19 Empirically derived sensitivity of vegetation to climate as a possible  
  functional constraint for process based land models – Gregory Quetin 
 8:40 P.20 Some suggestions on emergent constraints and metrics on model 
  evaluations over land – Xubin Zeng 
 9:00 P.21 Decomposition of CO2 fertilization effect into contributions by land 
  ecosystem processes: Comparison among CMIP5 Earth system models – Kaoru Tachiiri

9:20 Breakout Groups on Next Generation Benchmarking Challenges and  
 Priorities I – James T. Randerson

 Process-specific experiments (litterbags, 14C) – Mathew Williams and Jianyang Xia Terrace Ballroom 
 Metrics from extreme events – Hyungjun Kim and Maoyi Huang   Directors Room 
 Design of new perturbation experiments – Martin De Kauwe and Ankur Desai  Congressional Room

10:30 Morning Break         Ballroom Lobby

11:00 Breakout Groups on Next Generation Benchmarking Challenges and  
 Priorities II – David M. Lawrence

 High latitude processes – Kevin Schaefer, Charles D. Koven, and Umakant Mishra Terrace Ballroom 
 Tropical processes – Nathan McDowell and Paul Moorcroft    Directors Room 
 Global remote sensing – David Schimel and Shawn Serbin    Congressional Room

12:10 Breakout Group Reports (1–3 datasets, 1–3 new metrics, and bibliographies)  Terrace Ballroom
 12:10 Process-specific experiments 
 12:15 Metrics from extreme events 
 12:20 Design of new perturbation experiments 
 12:25 High latitude processes 
 12:30 Tropical processes 
 12:35 Global remote sensing

12:40 Working Lunch        Ballroom Lobby
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13:40 Plenary Presentations on Uncertainty Quantification (UQ) Methods –  
 Forrest M. Hoffman        Terrace Ballroom
 13:40 P.22 An uncertainty quantification framework designed for land models – Maoyi Huang 
 13:50 P.23 Use of emulators in uncertainty quantification – George Pau 
 14:00 P.24 Uncertainty quantification in the ACME land model – Dan Ricciuto 
 14:10 P.25 PEcAn: A community tool to enable synthesis, evaluation & forecasting – Shawn Serbin

14:20 Prioritizing Next Steps – James T. Randerson     Terrace Ballroom

14:40 Workshop Report Organization and Writing Assignments – Forrest M. Hoffman Terrace Ballroom

15:00 Afternoon Break        Ballroom Lobby

15:30 Parallel Sessions on the ILAMB Packages and a Global Synthesis

 ILAMB v2 Package Tutorial / Training Session – Nathan Collier   Terrace Ballroom 
 Global Synthesis Discussion (Continued from Tuesday) – Yiqi Luo   Directors Room 
 ILAMB v1 Package Demonstration and Application – Mingquan Mu  Congressional Room

17:00 Adjourn the Meeting

F.2 Plenary Presentation Abstracts
F.2.1 Benchmarking Tools

P.1 Protocol for the Analysis of Land Surface models (PALS)

Gab Abramowitz1;2;†

1University of New South Wales, Sydney NSW 2052, Australia 
2Australian Research Council Centre of Excellence for Climate System Science (ARCCSS), Sydney NSW 2052, Australia 
†Author to whom correspondence should be addressed; e-mail: gabsun@gmail.com

An increasing number of land surface model evaluation packages are becoming available, including ILAMB, LVT, 
EMSValTool and others. The first phase of the PALS web application also represented a something of a limited attempt 
at a standardised evaluation package, but was restricted to site-based evaluation and benchmarking. PALS facilitated the 
PALS Land sUrface Model Benchmarking Evaluation pRoject (PLUMBER; a MIP), also discussed at this meeting, and 
in particular promoted the use of empirical benchmarking as a way of defining model performance expectations.

With the arrival of the more comprehensive evaluation packages listed above, what have we learnt from PALS that is still 
of use? This presentation will focus in particular on the benefits of bringing tools such as these into an online web-based 
environment. These benefits include:

» ability to quickly and easily compare results internationally

» potential for better capture of simulation provenance information, increasing reproducibility

» simplicity and speed of creating MIPs

» MIPs can continue indefinitely, since they can be automated

» the ability to keep evaluation datasets for evaluation only (i.e. not calibration)

» identification of systematic performance issues across different models internationally

» new analyses can be applied to retrospectively to past simulation submissions

» ability to access archived historical model performance information

» increased transparency

Difficulties include sufficiently rigid i/o standards to enable automated analysis of model outputs, as well as intellectual 
property and security issues. Development of a second phase of a PALS-like environment that could incorporate a range 
of different analysis packages will also be discussed.
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P.2 PLUMBER: PALS Land sUrface Model Benchmarking Evaluation pRoject

Martin Best1;†, Gab Abramowitz2;3, and Andy Pitman2

1UK Met Office, Exeter, EX1 3PB, UK 
2University of New South Wales, Sydney NSW 2052, Australia 
3Australian Research Council Centre of Excellence for Climate System Science (ARCCSS), Sydney NSW 2052, Australia 
†Author to whom correspondence should be addressed; e-mail: martin.best@metoce.gov.uk

Many studies make the claim of undertaking model benchmarking. Unfortunately, there is often confusion about what 
“benchmarking” means; some undertake true benchmarking, others are undertaking the more traditional evaluation or 
comparison activities. In this presentation we will attempt to clarify the differences between the three approaches and 
demonstrate how the interpretation of model results can differ depending on which of the three measures of model 
performance are used. To enable this, data from the land surface benchmarking experiment PLUMBER (PALS Land 
sUrface Model Benchmarking Evaluation pRoject) are used.

In addition, a brief overview of the PLUMBER experimental protocol will be presented along with the key findings 
from the experiment to date. All land surface models had a consistent performance compared to the set of benchmarks 
when using standard statistical measures. These results demonstrated that the current day models perform better than 
older physical models, hence as a community we have progressed our knowledge over the last few decades. However, 
none of the models out performed the empirical benchmarks, with the models worse than a three variable piecewise 
linear regression for latent heat flux, but worse than even a single variable linear regression with downward shortwave 
radiation for the sensible heat flux!

Analysis using distribution statistics resulted in the land surface models having differing performance compared to the 
set of benchmarks. This result is inconsistent with the standard statistical measures and suggests that the models have 
been optimised for statistics such as mean bias error, standard deviation and correlation coefficient.

The conclusions from this study challenge our traditional view of the surface energy balance. In addition, the results 
suggest that improvements can be made to these models without the introduction of complexity, but by making better 
use of the currently available information content in the atmospheric forcing.

P.3 Towards efficient and systematic model benchmarking in CMIP6

Peter J. Gleckler1;† and Veronika Eyring2,
1Lawrence Livermore National Laboratory, Livermore, California, USA 
2Deutsches Zentrum fÜr Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany 
†Author to whom correspondence should be addressed; e-mail: gleckler1@llnl.gov

A more routine benchmarking and evaluation of models is envisaged to be a central part of CMIP6. One purpose of 
the DECK and CMIP historical simulations is to provide a basis for documenting model simulation characteristics. 
A few analysis packages currently under development will be routinely executed whenever new model experiments 
are contributed to the CMIP archive. The foundation that will enable this to be efficient and systematic is the 
community-based experimental protocols and conventions of CMIP, including their extension to obs4MIPs, which 
serves observations in parallel to the CMIP output on the ESFG. Examples of available tools that target routine 
evaluation in CMIP will be highlighted in this talk including the PCMDI Metrics Package (PMP) and the Earth System 
Model Evaluation Tool (ESMValTool). The PMP is built on DOE supported tools and emphases the implementation 
of a diverse suite of summary statistics to objectively gauge the level of agreement between model simulations and 
observations. ESMValTool includes a variety of diagnostics and metrics, including reproduction of the analysis in the 
IPCC AR5 model evaluation chapter. Both capabilities are open source, have a wide range of functionality, and are 
being developed as community tools with the involvement of multiple institutions. Collectively, the PMP, ESMValTool 
and ILAMB packages offer valuable capabilities that will be crucial for the systematic benchmarking of the wide variety 
of models and model versions contributed to CMIP6. This evaluation activity can, compared with early phases of 
CMIP, more quickly and openly relay to analysts and modelling centers the strengths and weaknesses of the simulations 
including the extent to which long-standing model errors remain evident in newer models. This talk will highlight the 
opportunities and challenges these capabilities provide as well as possible pathways to advance the coordination between 
them. It will also explain how this community-based benchmarking can accelerate the pace at which climate models can 
be used to further scientific understanding of climate change.
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P.4 Land surface Verification Toolkit (LVT): A formal benchmarking and evaluation framework for 
land surface models

Sujay V. Kumar1;† and Christa D. Peters-Lidard1

1NASA Goddard Space Flight Center, Greenbelt, Maryland, USA 
†Author to whom correspondence should be addressed; e-mail: Sujay.V.Kumar@nasa.gov

Though there is a vast amount of literature on land surface model development, model simulation studies and 
multi-model intercomparison projects, the evaluation methods and metrics used in them tend to be specific for 
individual case studies and mostly deterministic. These studies have not typically converged on standard measures of 
model performance for evaluating different LSMs. In this presentation, we describe the development and capabilities 
of a formal system for land surface model evaluation and benchmarking called the Land surface Verification 
Toolkit (LVT). LVT is designed to provide an automated, consolidated environment for model evaluation and 
includes approaches for conducting both traditional deterministic and probabilistic verification. LVT employs 
observational datasets in their native formats, enabling the continued use of the system without requiring additional 
implementation or data re-processing. Currently a large suite of in-situ, remotely sensed and other model and 
reanalysis datasets are implemented in LVT. Aside from the accuracy-based measures, LVT also includes metrics 
to aid model identification, such as entropy, complexity and information content. These measures can be used to 
characterize the tradeoffs in model performance relative to the information content of the model outputs. In addition 
to model verification, LVT also provides an environment for model benchmarking, where benchmark values for 
each metric is established a priori. The development of such benchmarks is facilitated in LVT, using regression and 
machine learning techniques. Finally, LVT also includes uncertainty and ensemble diagnostics based on Bayesian 
approaches that enable the quantification of predictive uncertainty in land surface model outputs. These capabilities 
provide novel ways to characterize LSM performance, enable rapid model evaluation efforts, and are expected to help 
in the definition and refinement of a formal benchmarking and evaluation process for the land surface modeling 
community. A suite of examples of using LVT for the evaluation of land surface model and data assimilation 
integrations will be presented.

P.5 Development of the International Land Model Benchmarking (ILAMB) System version 1  
and its application to CMIP5 Earth system models and the Community Land Model

James T. Randerson1;†, Mingquan Mu1, Gretchen Keppel-Aleks2, Charles D. Koven3, William J. Riley3  
Dave M. Lawrence4, and Forrest M. Hoffman5

1University of California Irvine, Irvine, California, USA 
2University of Michigan, Ann Arbor, Michigan, USA 
3Lawrence Berkeley National Laboratory, Berkeley, California, USA 
4National Center for Atmospheric Research, Boulder, Colorado, USA 
5Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 
†Author to whom correspondence should be addressed; e-mail: jranders@uci.edu

New approaches for evaluating earth system models (ESMs) are needed to improve the quality of simulations of 
future global environmental change and to speed model development. Here we describe the development of the 
International Land Model Benchmarking (ILAMB) software system. Version 1 of the ILAMB system (ILAMBv1) 
provides a framework for comparing model simulations with observations for 25 land surface variables. This 
set encompasses 9 carbon cycle and ecosystem, 5 hydrological and turbulent energy, 6 surface radiation, and 
5 driver variables. For many variables, more than one dataset has been integrated within the system, enabling 
comparisons with data products that have different regional coverage or methodology. For each data set, scoring 
metrics and graphical output allow the user to explore model behavior within different regions and across seasonal, 
interannual, and (when appropriate) decadal time scales. Another set of variable to variable comparisons enables 
investigation of functional relationships, and limits the influence of climate system biases. We use the ILAMBv1 
to evaluate ESMs participating in Phase 5 of the Coupled Model Intercomparison Project (CMIP5) and several 
versions of the Community Land Model. Analysis of historical simulations (1850-2005) from CMIP5 that had 
prognostic atmospheric carbon dioxide revealed several biases in the multi-model mean that may help guide future 
model development.
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F.2.2 Emergent Constraints and Evaluation Metrics I

P.6 Evaluation of vegetation cover and land-surface albedo

Victor Brovkin1;†, Lena Boysen1, Thomas Raddatz1, Veronika Gayler1, Alexander Loew1, and Martin Claussen1

1Max Planck Institute for Meteorology, Hamburg, Germany 
†Author to whom correspondence should be addressed; e-mail: victor.brovkin@mpimet.mpg.de

In recent generation Earth System Models (ESMs), land-surface grid cells are represented as tiles covered by different 
plant functional types (PFTs) such as trees or grasses. Here, we present an evaluation of the vegetation cover module 
of the MPI-ESM for present-day conditions. The vegetation continuous fields (VCF) product [Hansen et al., 2003] 
that is based on satellite observations in 2001 is used to evaluate the fractional distributions of woody vegetation 
cover and bare ground. The model performance is quantified using two metrics: a square of the Pearson correlation 
coefficient, r2, and the root-mean-square error, rmse. On a global scale, r2 and rmse of modeled tree cover are equal to 
0.61 and 0.19, respectively, which we consider as satisfactory values. The model simulates tree cover and bare ground 
with r2 higher for the Northern Hemisphere (0.66) than for the Southern Hemisphere (0.48-0.50). We complement 
this analysis with an evaluation of the simulated land-surface albedo using the difference in net surface radiation. 
On global scale, the correlation between modeled and observed albedo is high during all seasons, while the main 
disagreement occurs in spring in the high northern latitudes. This discrepancy can be attributed to a high sensitivity 
of the land-surface albedo to the simulated snow cover and snow-masking effect of trees. In contrast, the tropics 
are characterized by very high correlation and relatively low rmse (5.4–6.5 W/m2) during all seasons. The proposed 
approach could be applied for an evaluation of vegetation cover and land-surface albedo simulated by different ESMs.

P.7 Judging the dance contest – Metrics of land–atmosphere feedbacks

Paul A. Dirmeyer1;† and Liang Chen1

1Center for Ocean-Land-Atmosphere Studies (COLA), George Mason University, Manassas, Virginia, USA 
†Author to whom correspondence should be addressed; e-mail: pdirmeye@gmu.edu

The Global Energy and Water Exchanges project (GEWEX), part of the World Climate Research Programme, has 
supported the investigation of processes involved in the local coupling between land and atmosphere and how they 
are simulated in models. From this effort, a compilation of coupling metrics has been produced that quantify both 
legs of the feedback from land to atmosphere: how biophysical land surface states affect surface fluxes, and what 
effect changes in surface fluxes have on the overlying atmosphere. A key consideration emerges from this approach – 
namely, that in climate models, both dance partners (land and atmosphere) must execute their steps correctly for the 
feedbacks to be realized. This requires there to be sufficient sensitivity in the links of the feedback chain, variability 
of the drivers of the feedbacks and memory of anomalies that excite feedbacks. Some metrics of land-atmosphere 
coupling are predicated on unobservable characteristics (e.g., the behavior of ensemble statistics in model simulations) 
but recent emphasis has turned towards metrics based on observable quantities and climate model variables, which 
provide a means for univariate and multivariate validation of coupled land-atmosphere behavior in models. Examples 
will be presented to prompt further discussion of potentials for benchmarking.

F.2.3 Ecological Sampling Networks

P.8 Role of  flux networks in benchmarking land atmosphere models

Dennis Baldocchi1;†

1University of California Berkeley, Berkeley, California, USA 
†Author to whom correspondence should be addressed; e-mail: baldocchi@berkeley.edu

Fluxnet is an international network of long term flux measurements of carbon dioxide, water vapor, heat and 
momentum fluxes. The network spans the globe in terms of climate and ecological spaces. Plus many locales have 
clusters of sites that address land use, land use change, disturbance and management. The network has been in 
operation since 1997 and many sites have more than a decade of data.
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These flux data are proving to be useful to validate and parameterize light use efficiency models that are used by the 
satellite remote sensing community, to identify important processes that must be captures by land modules in climate 
models and as priors for the new generation of data model fusion methods. Site metadata are proving critical for 
providing initial conditions for models.

Lessons learned from the network and opportunities for the two communities to collaborate will be discussed.

F.2.4 MIP Benchmarking Needs

P.9 Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental 
Design and Organisation

Veronika Eyring1;†, Sandrine Bony2, Gerald A. Meehl3, Cath Senior4, Bjorn Stevens5, Ronald J. Stouffer6, and  
Karl E. Taylor7

Presented by David M. Lawrence3

1Deutsches Zentrum fÜr Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany 
2Laboratoire des Sciences du Climat et de l’Environnement, Gif sur Yvette Cedex, France and Universit Pierre et 
Marie Curie, Paris, France 
3National Center for Atmospheric Research, Boulder, Colorado, USA 
4UK Met Oce, Exeter, EX1 3PB, UK 
5Max Planck Institute for Meteorology, Hamburg, Germany 
6Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA 
7Lawrence Livermore National Laboratory, Livermore, California, USA 
†Author to whom correspondence should be addressed; e-mail: veronika.eyring@dlr.de

From Eyring et al., GMDD (2015): By coordinating the design and distribution of global climate model simulations 
of the past, current and future climate, the Coupled Model Intercomparison Project (CMIP) has become one of 
the foundational elements of climate science. However, the need to address an ever-expanding range of scientific 
questions arising from more and more research communities has made it necessary to revise the organization of 
CMIP. After a long and wide community consultation, a new and more federated structure has been put in place. 
It consists of three major elements: (1) a handful of common experiments, the DECK (Diagnostic, Evaluation 
and Characterization of Klima experiments) and the CMIP Historical Simulation (1850 – near-present) that will 
maintain continuity and help document basic characteristics of models across different phases of CMIP, (2) common 
standards, coordination, infrastructure and documentation that will facilitate the distribution of model outputs and 
the characterization of the model ensemble, and (3) an ensemble of CMIP-Endorsed Model Intercomparison Projects 
(MIPs) that will be specific to a particular phase of CMIP (now CMIP6) and that will build on the DECK and the 
CMIP Historical Simulation to address a large range of specific questions and ll the scientific gaps of the previous 
CMIP phases. The DECK and CMIP Historical Simulation, together with the use of CMIP data standards, will be 
the entry cards for models participating in CMIP. The participation in the CMIP6-Endorsed MIPs will be at the 
discretion of the modelling groups, and will depend on scientific interests and priorities. With the Grand Science 
Challenges of the World Climate Research Programme (WCRP) as its scientific backdrop, CMIP6 will address three 
broad questions: (i) How does the Earth system respond to forcing?, (ii) What are the origins and consequences of 
systematic model biases?, and (iii) How can we assess future climate changes given climate variability, predictability 
and uncertainties in scenarios? This CMIP6 overview presents the background and rationale for the new structure 
of CMIP, provides a detailed description of the DECK and the CMIP6 Historical Simulation, and includes a brief 
introduction to the 21 CMIP6-Endorsed MIPs.

Reference: Eyring, V., Bony, S., Meehl, G. A., Senior, C., Stevens, B., Stouffer, R. J., and Taylor, K. E. (2015), 
Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organisation, 
Geosci. Model Dev. Discuss., 8:10539-10583, doi:10.5194/gmdd-8-10539-2015.
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P.10 Assessing feedbacks for the Coupled Climate–Carbon Cycle Modeling Intercomparison 
Project (C4MIP)

Forrest M. Hoffman1;†, James T. Randerson2, Charles D. Koven3, and the C4MIP SSC and members
1Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 
2University of California Irvine, Irvine, California, USA 
3Lawrence Berkeley National Laboratory, Berkeley, California, USA 
†Author to whom correspondence should be addressed; e-mail: forrest@climatemodeling.org

The objective of the Coupled Climate–Carbon Cycle Modeling Intercomparison Project (C4MIP) is to design, 
document, and analyze carbon cycle feedbacks and nutrient interactions in climate simulations for the sixth phase of 
the Coupled Model Intercomparison Project (CMIP6). These biogeochemical feedbacks are uncertain and potentially 
large, and they play a strong role in determining future atmospheric CO2 levels in response to anthropogenic 
emissions and attempts to avoid dangerous climate change. Our recent paper (Jones et al., 2016) describes the 
simulations that will complement and extend the carbon cycle simulations included the CMIP6 core experiments 
known as the DECK. The key science motivations of these simulations are to 1) quantify and understand the carbon-
concentration and carbon-climate feedback parameters, which capture the modeled response of land and ocean 
biogeochemistry components to changes in atmospheric CO2 and the associated changes in climate, respectively;  
2) evaluate models by comparing historical simulations with observation-based estimates of climatological states 
of carbon cycle variables, their variability and long-term trends; 3) assess the future projections of components 
of the global carbon budget for different scenarios. Model benchmarking efforts being undertaken for ILAMB 
are particularly important for the second of these motivations. In this presentation, we will briefly describe the 
experimental design of the CMIP6 historical and C4MIP experiments and link these to model evaluation objectives 
that may be addressed by ILAMB benchmarking tools.

Reference: Jones, Chris D., Vivek Arora, Pierre Friedlingstein, Laurent Bopp, Victor Brovkin, John Dunne, Heather 
Graven, Forrest M. Hoffman, Tatiana Ilyina, Jasmin G. John, Martin Jung, Michio Kawamiya, Charles D. Koven, 
Julia Pongratz, Thomas Raddatz, James T. Randerson, and SÖnke Zaehle (2016), The C4MIP experimental protocol 
for CMIP6, Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-36.

P.11 The Land Surface, Snow and Soil moisture Model Intercomparison Project (LS3MIP) and 
Global Soil Wetness Project Phase 3 (GSWP3)

Hyungjun Kim1;†, Bart van den Hurk2, Gerhard Krinner3, Sonia I. Seneviratne4, Chris Derksen5, and Taikan Oki1

1University of Tokyo, Bunkyo-ku, Tokyo, Japan 
2Royal Netherlands Meteorological Institute (KNMI), NL-3731 GA De Bilt, Netherlands 
3Laboratoire de Glaciologie et Gophysique de l’Environnement (LGGE), Grenoble, France 
4Swiss Federal Institute of Technology (ETH), ZÜrich, Switzerland 
5Environment Canada, Waterloo, Ontario, Canada 
†Author to whom correspondence should be addressed; e-mail: hjkim@iis.u-tokyo.ac.jp

The solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and 
its predictability, including effects on the energy and carbon cycles. Notably, snow and soil moisture affect surface 
radiation and flux partitioning properties, moisture storage and land surface memory. Recently, the Land Surface, 
Snow and Soil moisture Model Intercomparison Project (LS3MIP) was initiated as an intercommunity effort between 
Global Energy and Water Cycle Exchanges Project (GEWEX) and Climate and Cryosphere (CliC) to contribute to 
the 6th phase of Coupled Model Intercomparison Project (CMIP).

The experiment structure of the LS3MIP was designed to provide a comprehensive assessment of land surface, 
snow, and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in 
the land modules of current Atmospheric-Ocean General Circulation Models and Earth System Models with the 
following objectives:

» evaluate the current state of land processes including surface fluxes, snow cover and soil moisture representation in 
CMIP6 DECK runs;

» estimate multi-model long-term terrestrial energy/water/carbon cycles, using the surface modules of CMIP6 
models under observation constrained historical (land reanalysis) and projected future (impact assessment) 
conditions considering land use/land cover changes;
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» assess the role of snow and soil moisture feedbacks in the regional response to altered climate forcings, focusing on 
controls of climate extremes, water availability and high-latitude climate in historical and future scenario runs;

» assess the contribution of land surface processes to the current and future predictability of regional temperature/ 
 precipitation patterns. The outcomes of the LS3MIP will eventually contribute to the improvement of climate  
 change projections by reducing the systematic biases and representing better feedback mechanisms in  
 coupled models.

Further, the impacts of climate change on hydrological regimes and available freshwater resources including extreme 
events, such as floods and droughts, will be assessed based on multi-model ensemble estimates of long-term historical 
and projected future changes in energy, water, and carbon cycles over land surfaces. Those achievements will 
contribute to the next cycle of the Intergovernmental Panel on Climate Change.

P.12 Land-use and land-cover change model performance metrics for LUMIP

Dave M. Lawrence1;†, George Hurtt2, and LUMIP SSC and members
1National Center for Atmospheric Research, Boulder, Colorado, USA 
2University of Maryland, College Park, Maryland, USA 
†Author to whom correspondence should be addressed; e-mail: dlawren@ucar.edu

The main science questions that will be addressed by LUMIP (Lawrence et al. 2016), in the context of CMIP6 are:

» What are the global and regional effects of land-use and land-cover change on climate and biogeochemical cycling 
(past-future)?

» What are the impacts of land management on surface fluxes of carbon, water, and energy and are there regional 
land management strategies with promise to help mitigate and/or adapt to climate change?

In addressing these questions, LUMIP will also address a range of more detailed science questions to get at process 
level attribution, uncertainty, data requirements, and other related issues in more depth and sophistication than 
possible in a multi-model context to date. There will be particular focus on (1) the separation and quantification of 
the effects on climate from land-use change relative to fossil fuel emissions, (2) separation of biogeochemical from 
biogeophysical effects of land-use, (3) the unique impacts of land-cover change versus land management change, (4) 
modulation of land-use impact on climate by land-atmosphere coupling strength, and (5) the extent that direct effects 
of enhanced CO2 concentrations on plant photosynthesis (changes in water-use efficiency and/or plant growth) are 
modulated by past and future land use.

One of the activities of LUMIP is to develop a set of metrics and diagnostic protocols quantify model performance, 
and related sensitivities, with respect to land use. De Noblet-Ducoudr et al (2012) identified the lack of consistent 
evaluation of a land model’s ability to represent a response to a perturbation such as land-use change as a key 
contributor to the large spread in simulated land-cover change responses seen in the LUCID project. As part of 
this activity, benchmarking data products will be identified to help constrain models. Several recent studies have 
utilized various methodologies, including paired tower sites and reconstructed change maps from satellites, to infer 
observationally-based historical change in land surface variables impacted by LULCC or divergences in surface 
response between different land-cover types (Boisier et al. 2013, 2014; Lee et al. 2011; Lejeune et al. 2016; Li et al. 
2015; Teuling et al. 2010; Williams et al. 2012).

P.13 Multi-scale Synthesis & Terrestrial Model Intercomparison Project: From cohort to insight

Christopher R. Schwalm1,†, Deborah N. Huntzinger2, Anna M. Michalak3, Yuanyuan Fang3, Kevin M. Schaefer4, 
Andrew R. Jacobson5, Joshua B. Fisher6, Robert B. Cook7, and Yaxing Wei7

1Woods Hole Research Center, Falmouth, Massachusetts, USA 
2Northern Arizona University, Flagstaff, Arizona, USA 
3Carnegie Institution for Global Ecology, Stanford University, Stanford, California, USA 
4National Snow and Ice Data Center, University of Colorado, Boulder, Colorado, USA 
5National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado, USA 
6NASA Jet Propulsion Laboratory, Pasadena, California, USA 
7Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 
†Author to whom correspondence should be addressed; e-mail: schwalm.christopher@gmail.com
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Earth system models (ESMs) are indispensable for extrapolating local observations and process level understanding 
of land–atmosphere exchange in both time and space. ESMs have and will continue to serve as predictive tools to 
understand carbon–climate interactions and global change. The North American Carbon Program (NACP) Multi-
scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal intercomparison and evaluation 
effort focused on the land component of ESMs, i.e., land surface models (LSMs). MsTMIPs overarching goals are  
(1) to improve the diagnosis, attribution and prediction of carbon exchange at regional to global scales; and  
(2) to diagnose causes and consequences of inter-model variability. A key design tenet of MsMTIP is its standardized 
protocol. Forcing data, steady-state spin-up, and boundary conditions are uniform across all participating models. 
Modeler discretion is constrained to allow a mapping of skill to structure. The MsTMIP effort formally consists of 
two phases: Phase I (now complete) assembled a cohort of ca. 20 modeling teams and has released results from 15 
LSMs. These results cover the 1901–2010 time period (half-degree resolution, monthly time step) and are based on 
a semi-factorial set of simulations; time-varying climate, land cover/land use change, carbon dioxide, and nitrogen 
deposition are sequentially enabled. Phase II (currently underway) extends Phase I models runs to 2100 using 
downscaled CMIP5 model output (5 ESMs and 2 RCPs [4.5 and 8.5]) as forcing data. With these predictive/forecast 
simulations MsTMIP can now serve as a platform to evaluate of how model structural differences, key controls of 
carbon metabolism, and plausible climate futures alter predictions of future carbon dynamics.

 P.14 Processes Linked to Uncertainties Modelling Ecosystems (PLUME-MIP)

Anders AhlstrÖm1,2,†, Benjamin Smith2, Almuth Arneth3, Yiqi Luo4, Jianyang Xia5, and Michael Mishurow2

1Stanford University, Stanford, California, USA 
2Lund University, Lund, Sweden 
3Karlsruhe Institute of Technology, Karlsruhe, Germany 
4University of Oklahoma, Norman, Oklahoma, USA 
5East China Normal University, Shanghai, China 
†Author to whom correspondence should be addressed; e-mail: anders.ahlstrom@nateko.lu.se

PLUME addresses DGVM/LSM responses to environmental drivers under current and future projections and 
attempts to advance the state-of-the-art in attributing modelled carbon cycle responses to underlying mechanisms, as 
represented in the models.

The project is divided into two main tiers.

Tier 1 involves standard transient simulations using CMIP5 recent past and future climate as forcing. The outcomes 
will be used to evaluate the different responses of the terrestrial C cycle to climate projections and CO2 pathways.

Tier 2 adopts the transient Traceability Framework (TF) to identify underlying causes of differences in the responses 
of different models to current and future climate forcing. The framework is designed to facilitate model inter-
comparisons by tracking a few traceable components across models.

Both Tiers contribute to the aim of isolating the processes responsible for differences between models and their future 
projections, using a transparent and systematic methodology. The TF represent the flows of carbon in the models and 
allows for a set of novel experiments. These experiments are based on replacing components and fluxes in the models 
with common or observed forcing, e.g. forcing the transient TF emulator of the models with NPP or vegetation 
inputs to soil, to isolate and estimate the relative contribution of processes to carbon storage uncertainties.

Within the project we offer assistance to help implementation of the framework, data har monization and storage on a 
common database.

F.2.5 Emergent Constraints and Evaluation Metrics II

P.15 New benchmarks for northern high latitudes

Charles D. Koven1,†

1Lawrence Berkeley National Laboratory, Berkeley, California, USA 
†Author to whom correspondence should be addressed; e-mail: cdkoven@lbl.gov

The northern high latitudes, with large stocks of carbon, high anticipated rates of climate change, and importance 
of abrupt change in ecosystem state with warming due to the importance of freeze/thaw processes, are a crucial 
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component of the Earth system that global models must represent. The CMIP5 ESMs fared particularly poorly in this 
region, due to the historical lack of attention paid to high latitude terrestrial processes in global models. I will discuss 
a variety of benchmarks focused around three areas: soil temperature dynamics and permafrost state, soil carbon 
stocks and turnover times, and hydrology dynamics. Each of these allow constraints on high latitude dynamics and 
may help to reduce uncertainty in model projections of the high latitude region.

P.16 Permafrost Benchmark System (PBS)

Kevin M. Schaefer1,†, Elchin Jafarov2, Mark Piper2, Christopher R. Schwalm3, Kang Wang2, and Lynn Yarmey1

1National Snow and Ice Data Center, University of Colorado, Boulder, Colorado, USA 
2Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA 
3Woods Hole Research Center, Falmouth, Massachusetts, USA 
†Author to whom correspondence should be addressed; e-mail: kevin.schaefer@nsidc.org

The Permafrost Benchmark System (PBS) will evaluate simulated permafrost dynamics against observed permafrost 
conditions. The project goals are 1) to develop a set of generic benchmarking tools capable of calculating performance 
statistics in multiple benchmarking efforts, and 2) develop benchmark datasets of permafrost dynamics based on 
available ob servations and 3) apply the PBS by evaluating models that ran the CMIP5 and MsTMIP simulations. We 
will collaborate with ILAMB to optimize resources and maximize benifit to the modeling community. We will use 
the core ILAMB infrastructure for benchmark management and model scoring. We will integrate the benchmarks 
we develop into ILAMB and integrate ILAMB into the Community Surface Dynamics Modeling System (CSDMS) 
to provide and an online user interface. This will provide an easily accessible, online tool to quickly evaluate model 
performance and guide model development without having to invest large resources into data preparation and 
organization. The chosen benchmark datasets include measurements of active layer thickness, permafrost temperature, 
snow conditions, and frozen soil biogeochemistry. We have formed an informal group of people already developing 
permafrost benchmarks to coordinate our activities and minimize duplication. The ideal performance target is to 
match the observations within uncertainty, so the PBS benchmark datasets and evaluation metrics will account 
for observation uncertainty. The combined IL  AMB and PBS infrastructure fills a basic need of modeling teams to 
evaluate how well their models simulate permafrost dynamics, without a heavy investment in time and resources to 
organize the observations.

F.2.6 Strategies for Improving Models Through Evaluation

P.17 Theory-guided model evaluation and improvement

Yiqi Luo1,† and many others
1University of Oklahoma, Norman, Oklahoma, USA 
†Author to whom correspondence should be addressed; e-mail: yluo@ou.edu

Global land models have become increasingly complicated over the past decades as more and more processes are 
incorporated into the models to simulate C cycle responses to global change. As a consequence, it becomes very 
difficult to understand or evaluate complex behaviors of these models. Differences in predictions among models 
cannot be easily diagnosed and attributed to their sources. In the past few years, we have developed a new theoretical 
framework to quantify terrestrial carbon storage dynamics. Our theoretical analysis indicates that the ultimate force 
driving C storage change in an ecosystem is the equilibrium C storage capacity, which is jointly determined by 
ecosystem C input (e.g., net primary production, NPP) and residence time. Since both C input and residence time 
vary with time, the equilibrium C storage capacity is time-dependent and acts as a moving target that actual C storage 
chases. The rate of change in C storage is proportional to the C storage potential, the difference between the current 
and equilibrium C storage.

The theoretical framework offers a suite of new techniques for evaluating and improving global land carbon cycle 
models. Those techniques include high-fidelity emulator, three- dimensional (3D) parameter space, traceability 
analysis, and semi-analytic spin-up (SASU).

A high fidelity emulator is a matrix representation of soil carbon processes. The matrix equation consists of carbon 
balance equations, each of which carbon input into and output from each of the individual carbon pools. We have 
developed emulators of CLM3.5, CLM4.5, CABLE, LPJ-GUESS, and regional TECO, which can exactly replicate 
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simulations of C pools and fluxes with their original models when driven by a limited set of inputs from the full 
model (GPP, soil temperature, and soil moisture).

The 3D parameter space can place outputs of any carbon cycle models with a common metric to measure differences 
among models in terms of NPP, carbon residence time, and carbon storage potential.

The traceability analysis is to decompose a complex land model into traceable components based on mutually 
independent properties of modeled biogeochemical processes. By doing so, we can attribute model-model differences 
to sources in model structure, parameter, and forcing fields. The traceability analysis also can be used to evaluate 
effectiveness of newly incorporated modules into existing models, such as adding the N module on simulated 
C dynamics.

 The semi-analytical spin-up (SASU) is the analytic solution to a set of equations that describe carbon transfers within 
ecosystems over time.

F.2.7 Emergent Constraints and Evaluation Metrics III

P.18 Evaluating the simulations of global nutrient cycles: Available observations and challenges

Ying-Ping Wang1,†, Benjamin Houlton2, and Edith Bai3

1Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere, Aspendale, 
Victoria 3195, Australia 
2University of California Davis, Davis, California, USA 
3Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China 
†Author to whom correspondence should be addressed; e-mail: yingping.wang@csiro.au

Experimental evidence suggests that productivity of most land ecosystems is limited by supplies of major nutrients, 
particularly nitrogen at high latitudes and phosphorus at low latitudes. However, representation of nutrient limitation 
in different global land models has rarely been assessed systematically.

Here, I will discuss three types of data for evaluating the performance of global nutrient cycles: spatially explicit data 
of soil nitrogen and phosphorus pools; nitrogen isotope composition; variations of C:N and N:P ratios of leaf, wood 
and root tissues by plant functional types or latitude; and field long-term (>10 years) fertilizing experiments or 15N 
tracer experiments. Examples from the published studies will be presented to show how each type of observations are 
used to assess global nutrient cycle simulations. Collectively, the combined benchmarking approaches substantially 
aid in model based projections of global carbon- nutrient interactions.

Nevertheless, three major issue challenges remain. First, estimates of nitrogen fixation from the unmanaged land 
vary from 58 to over 200 Tg N/year, and the response of the observed of nitrogen fixation to CO2 can also be highly 
uncertain. Yet there is currently no globally integrated approach to reduce this uncertainty.

Second, estimates of phosphorus input to land ecosystems through rock weathering and tectonic uplift vary by a 
factor of two. A recent study also found the phosphorus deposition input is significantly larger than previous estimate. 
These large uncertainties make the simulations of phosphorus cycles at global scale highly uncertain.

Third, most global nutrient models do not represent nutrient losses from particulate matter (both organic and 
inorganic). These models need to be coupled to hydraulic models to simulate the nutrient exports, in both organic 
and inorganic forms, from land to river, which have been measured over all major rivers in the world, and can be used 
to evaluate global nutrient cycles in the future.

P.19 Empirically derived sensitivity of vegetation to climate as a possible functional constraint 
for process based land models

Gregory R. Quetin1,† and Abigail L. S. Swann1

1University of Washington, Seattle, Washington, USA 
†Author to whom correspondence should be addressed; e-mail: gquetin@uw.edu

Vegetated land ecosystems are shaped by climate across the globe to best take advantage of the conditions and 
resources available. Acclimation to different climatological states changes how each ecosystem functions, with the 
supply of different resources determining constraints on growth. Here we derive an empirical global map of the 
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sensitivity of vegetation to climate using the response of satellite-based greenness to interannual variations in surface 
air temperature and precipitation. We infer constraints on ecosystem function by analyzing how the sensitivity of 
vegetation to climate varies across climate space. We find four broad climate regions of ecosystem function. There 
is a cold region below 15oC, which is generally greener during warmer and drier years. There is a transition region 
between cold climate regions and hotter regions where the sign of vegetation sensitivity changes along a line of 
0.017oC/mm/yr, indicative of constraints on productivity driven by a balance between water supply and temperature-
dependent atmospheric water demand. A hot dry region above 15oC and below ~1000 mm/year rainfall is browner 
in warm years and greener in wetter years. Finally, a region beyond 1500 mm/year rainfall greens during warmer 
years even at the hottest vegetated places on Earth. In this region we propose that increased stress from temperature-
dependent atmospheric water demand is offset by increased insolation that increases photosynthesis. These broad 
empirical patterns of ecosystem function across climate have the potential to provide functional constraints for Earth 
system models, helping improve our ability to model and predict global vegetation under a changing climate.

P.20 Some suggestions on emergent constraints and metrics on model evaluations over land

Xubin Zeng1,†, William Lytle1, Patrick Broxton1, Nick Dawson1, and Aihui Wang
1University of Arizona, Tucson, Arizona, USA 
2Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China 
†Author to whom correspondence should be addressed; e-mail: xubin@email.arizona.edu

(1) We have developed global hourly 0.5 degree land surface 2 m temperature (T2m) datasets based on four reanalysis 
products and the CRUTS3.10 in situ dataset for 1948–2009. Our three-step adjustments ensure that our final 
products have exactly the same monthly-mean maximum (Tx) and minimum (Tn) temperature as the CRU data.  
One of the uncertainties in our final products can be quantified by their differences (Wang and Zeng 2013).

Based on these results, we make two suggestions for model land surface T2m evaluation metrics:

» To evaluate model monthly mean temperature, which is averaged over all time steps, using the true monthly mean 
based on hourly values from our datasets, rather than using Tm = (Tx + Tn) /2

» To save monthly averaged diurnal cycle from models and compare its range with that based on our datasets, rather 
than using DTR = Tx − Tn.

(2) We have used measurements for several years at five flux tower sites in the U.S. (with a total of 315,576 hours of 
data) along with in situ snow measurements for the coupled evaluation of both below- and above-ground processes 
from three global reanalysis products and six global land data assimilation products. While errors in T2m are highly 
correlated with errors in skin temperature for all sites, the correlations between skin and soil tempera ture errors are 
weaker, particularly over the sites with seasonal snow (Lytle and Zeng 2016). Therefore, one emergent constraint in 
model evaluation is the coupled evaluation of daily air, skin, and soil temperatures.

(3) It is well known that snow depth or water equivalent (SWE) varies substantially horizontally and with elevations, 
but we found that four methods for the spatial interpolation of peak of winter SWE and snow depth based on 
distance and elevation can result in large errors based on (SNOTEL and COOP) in situ data. These errors are  
reduced substantially by our new method; i.e., the spatial interpolation of these quantities normalized by accumulated 
snowfall. Our method results in significant improvement in SWE estimates over interpolation techniques that do not 
consider snowfall, regardless of the number of stations used for the interpolation (Broxton et al. 2016). Therefore, one 
emergent constraint in model evaluation is the evaluation of daily SWE over the accumulated snowfall.

P.21 Decomposition of CO2  fertilization effect into contributions by land ecosystem processes:  
Comparison among CMIP5 Earth system models

Kaoru Tachiiri1,†, Tomohiro Hajima1, and Michio Kawamiya1

1Japan Agency for Marine-Earth Science and Technology, Kanagawa Prefecture, Japan 
†Author to whom correspondence should be addressed; e-mail: tachiiri@jamstec.go.jp

Increase in atmospheric CO2 concentration stimulates plant growth, and promotes carbon uptake by land ecosystems. 
This process, often called CO2 fertilization, causes a negative feedback between atmospheric CO2 concentration 
and terrestrial carbon uptake. The feed  back is considered to have a strong impact on the climate–carbon cycle 
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system, but that has large inter-model variation in exiting Earth system models (ESMs). In this study, we examined 
in detail the sensitivity of change in land carbon storage to that in atmospheric CO2 concentration (ΔCO2) for the 
CMIP5 participant ESMs by breaking that down into the ratios of ΔCO2, changes in gross primary production, 
leaf area index, net primary production, vegetation carbon, soil carbon, heterotrophic respiration, and land carbon 
storage. The results showed that increase in atmospheric CO2 concentration stimulates plant production, litter fall, 
and heterotrophic respiration with different sensitivities to ΔCO2 among the models, and major part in sensitivity 
of land carbon storage to ΔCO2 could be explained by the sensitivity of plant productivity. The result suggests that 
to constrain the CO2 fertilization effect we need to better understand plant primary production, and to do so more 
observations and experiments are needed. In case the number of ESMs incorporating the nitrogen cycle increases, we 
may need a new framework to evaluate the carbon and nitrogen cycles with integrated manner to analyze the CO2 
fertilization effect.

F.2.8 Uncertainty Quantification (UQ) Methods

P.22 An uncertainty quantification framework designed for land models

Maoyi Huang1,†, Zhangshuan Hou1, Jaideep Ray2, Laura Swiler3, and L. Ruby Leung1

1Pacific Northwest National Laboratory, Richland, Washington, USA 
2Sandia National Laboratories, Livermore, California, USA 
3Sandia National Laboratories, Albuquerque, New Mexico, USA 
†Author to whom correspondence should be addressed; e-mail: maoyi.huang@pnnl.gov

Representing terrestrial processes and their exchanges with the atmosphere, land surface models are important 
components of Earth system models used to predict climate variations and change. Most land surface models 
include numerous sub-models, each representing key processes with mathematical equations and model parameters. 
Optimizing the parameter values may improve model skill in capturing the observed behaviors. In this presentation, 
we will discuss recent progress in quantifying uncertainty associated with hydrologic parameters in the Community 
Land Model (CLM) and calibrating those parameters using an uncertainty quantification (UQ) framework 
that features global sensitivity analysis, parameter screening, classifying the complex system into a few relatively 
homogeneous regions, and Bayesian inversion using Markov Chain Monte Carlo techniques. The UQ framework has 
been applied it to flux towers and watersheds under different climate and site conditions in the contiguous United 
States. Through these studies, they demonstrated that the CLM-simulated latent heat and sensible heat fluxes, and 
runoff generation are highly sensitive to hydrologic parameters, which could be better constrained using in-situ 
and remotely-sensed measurements such as the benchmarking datasets available in the International Land Model 
Benchmarking framework (ILAMB) (e.g., data from AmeriFlux network, streamflow gages, data products from the 
Moderate Resolution Imaging Spectroradiometer), when integrated with the UQ framework developed by the team. 
Although only being integrated with CLM, the framework is general and therefore is portable to other land models.

P.23 Use of emulators in uncertainty quantification

George Shu Heng Pau1,†, Chaopeng Shen2, and William J. Riley1

1Lawrence Berkeley National Laboratory, Berkeley, California, USA 
2Pennsylvania State University, State College, Pennsylvania, USA 
†Author to whom correspondence should be addressed; e-mail: gpau@lbl.gov

Direct application of robust uncertainty quantification techniques, such as Monte Carlo methods, to high-resolution 
land models is typically infeasible even with existing high-end computing ecosystems. To reduce the computational 
burden of applying these techniques, we develop certified reduced order models, or emulators, to efficiently 
approximate solutions to high-resolution land models at a significant reduced cost. For a watershed-scale land model, 
we demonstrated that the proper orthogonal decomposition mapping method led to an emulator that had the 
desired spatial and temporal accuracies. The emulator then allows us to quantify uncertainties at scales relevant to 
decision support.
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P.24 Uncertainty quantification in the ACME land model

Daniel M. Ricciuto1,†, Khachik Sargsyan2, and Peter E. Thornton1

1Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 
2Sandia National Laboratories, Livermore, California, USA 
†Author to whom correspondence should be addressed; e-mail: ricciutodm@ornl.gov

For computationally expensive climate models, Monte-Carlo approaches of exploring the in  put parameter space 
are often prohibitive due to slow convergence with respect to ensemble size. To alleviate this, we build inexpensive 
surrogates using uncertainty quantification (UQ) methods employing Polynomial Chaos (PC) expansions that 
approximate the input-output relationships using as few model evaluations as possible. However, when many 
uncertain input parameters are present, such UQ studies suffer from the curse of dimensionality. In particular, for 
50–100 input parameters non-adaptive PC representations have infeasible numbers of basis terms. To this end, we 
develop and employ Weighted Iterative Bayesian Compressive Sensing to learn the most important input parameter 
relationships for efficient, sparse PC surrogate construction with posterior uncertainty quantified due to insufficient 
data. Besides drastic dimensionality reduction, such uncertain surrogate can efficiently replace the model in 
computationally intensive studies such as forward uncertainty propagation and variance-based sensitivity analysis, as 
well as design optimization and parameter estimation using observational data.

We apply the surrogate construction and variance-based uncertainty decomposition to Accelerated Climate Model for 
Energy (ACME) Land Model for several output quantities of interest at model grid cells representing the locations 
of 100 FLUXNET sites, covering multiple plant functional types and a broad array of climates, varying 65 input 
parameters over ranges of possible values defined by literature and expert opinion. We find general consistency of the 
top 10–15 most sensitive parameters across sites and across quantities of interest, with some variation in the relative 
ranking of these parameters. We find especially strong sensitivity to parameters related to photosynthesis, nitrogen 
cycling, and allocation. Finally, we assess the quality of the surrogate model and the potential applications of UQ 
methods for model calibration and benchmarking.

P.25 PEcAn: A community tool to enable synthesis, evaluation & forecasting

Shawn P. Serbin1,†, Michael C. Dietze2, and the PEcAn Project team
1Brookhaven National Laboratory, Upton, New York, USA 
2Boston University, Boston, Massachusetts, USA 
†Author to whom correspondence should be addressed; e-mail: sserbin@bnl.gov

Models are our primary tool for synthesizing our understanding of ecosystems and projecting the impact of 
global change on ecosystem services associated with carbon, energy and water fluxes and storage. Recently the use 
of models as a scaffold for data-driven synthesis has expanded and there is increasing interest in formal model–
data experimentation (ModEx) frameworks to quantify uncertainties, evaluate models, enable the integration of 
observations, and guide model developments as well as focus data collection on parameters that drive the greatest 
uncertainty. However, models remain inaccessible to most ecologists, in large part due to the informatics challenges 
of managing the flows of information in and out of such models, as well as access to the tools necessary to properly 
synthesize model results and quantify the uncertainties in projections. Managing the communication between 
models and data involves three distinct challenges: dealing with the volume of big data; processing unstructured and 
uncurated long tail data; and the need to capture and propagate uncertainties in model–data comparisons and formal 
data–model assimilation. Finally, model development has long been an academic cottage industry, with different 
models lacking compatible formats for inputs, outputs, and settings. This has lead to massive redundancies and 
minimal reproducibility. As a result, the pace of model improvement has been glacial. PEcAn (http://pecanproject.
org/), a tool box for model–data ecoinformatics, tackles many of these challenges. Users interact with models through 
an intuitive Google-Map  based interface, a simple application program interface (API) and standardized file formats. 
Standardization allows the development of common, reusable tools for processing inputs, visualizing outputs, and 
automating analyses. PEcAn includes state-of-the-art Hierarchical Bayes tools for model parameterization, data 
assimilation, uncertainty quantification (UQ) and variance decomposition (VD), as well as the ability to leverage 
tools for processing uncurated data. In addition to these tools, PEcAn leverages a PostGIS database network to 
track all inputs, outputs, and model runs, greatly increasing reproducibility and reliability. Within the PEcAn 
network, the database syncs all results and facilitates file sharing to allow models to talk to each other and enables the 
community to effectively analyze many models distributed across a global network, thereby increasing the ability to 
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conduct mulit-model, multi-institutional model comparisons and synthesis activities. In this talk, we will review the 
capabilities within PEcAn for formal UQ/VD to guide modeling activities but also discuss the many other features 
and provide an example of the capability for data assimilation and model–data experimentation.
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Appendix H. 
Acronyms and Abbreviations
ACME  Accelerated Climate Modeling for Energy 
AGU  American Geophysical Union 
ALM  ACME Land Model 
ALMA  Assistance for Land-surface Modeling Activities convention for NetCDF files 
AMIP  Atmospheric Model Intercomparison Project 
API  application programming interface 
ASCAT  Advanced SCATterometer

BCS  Bayesian Compressive Sensing

C   carbon 
CESM  Community Earth System Model 
CF   Climate and Forecast convention for NetCDF files 
C-LAMP  Carbon-Land Model Intercomparison Project 
CLM  Community Land Model 
C4MIP  Coupled Climate-Carbon Cycle MIP 
CMIP  Coupled Model Intercomparison Project 
CRU  Climate Research Unit 
CTFS  Center for Tropical Forest Science 
CZO  Critical Zone Observatory

DA  data assimilation
DECK  Diagnostic, Evaluation, and Characterization of Klima
DGVM  dynamic global vegetation model
DOE  U.S. Department of Energy
DVM  dynamic vegetation model

ECV  essential climate variable
ESGF  Earth System Grid Federation
ESM  Earth System Model
ESM-SnowMIP Earth System Model Snow Model Intercomparison Project
ESMValTool Earth System Model Evaluation Tool
ET   evapotranspiration

FACE  Free-Air Carbon dioxide Enrichment
FIA  Forest Inventory and Analysis
FLUXNET Global eddy covariance flux network of regional networks
ForestGEO Forest Global Earth Observatory

GEDI  Global Ecosystem Dynamics Investigation
GEM  Global Ecosystem Monitoring network
GFDL  Geophysical Fluid Dynamics Laboratory
GLACE  Global Land-Atmosphere Coupling Experiment
GPP  gross primary production
GRDC  Global Runoff Data Center
GRACE  Gravity Recovery And Climate Experiment
GSA  global sensitivity analysis
GSWP3  Global Soil Wetness Project 3
GUI  graphical user interface

HPC  high-performance computing
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ICOS  Integrated Carbon Observation System
ILAMB  International Land Model Benchmarking
IS   imaging spectroscopy
ITCZ  Inter-Tropical Convergence Zone
ITEX  International Tundra Experiment

JPL  Jet Propulsion Laboratory
JSON  JavaScript Object Notation

KL   Karhunen-Loeve

LAI  leaf area index
LH  latent heat
LiDAR  Light Detection And Ranging
LIS  Land Information System
LS3MIP  Land Surface, Snow and Soil Moisture Model Intercomparison Program
LSM  land surface model
LUCID  Land-Use and Climate, IDentification of robust impacts
LULCC  land use and land cover change
LUMIP  Land Use Model Intercomparison Project
LVT  Land surface Verification Toolkit

MC  Monte Carlo
MCMC  Markov Chain Monte Carlo
MDF  model–data fusion
MIP  model intercomparison project
ModEx  Model–data experimentation
MOPEX  Model Parameter Estimation Experiment
MSE  mean-square error
MsTMIP  Multi-scale Synthesis & Terrestrial Model Intercomparison Project
MTE  model tree ensemble

NACP  North American Carbon Program
NASA  National Aeronautics and Space Administration
NBP  net biosphere productivity
NCAR  National Center for Atmospheric Research
NCEP  National Centers for Environmental Prediction
NCL  NCAR Command Language
NDVI  Normalized Difference Vegetation Index
NEE  net ecosystem exchange
NEON  National Ecological Observatory Network
NEP  net ecosystem productivity
NetCDF  Network Common Data Form
NGEE  Next Generation Ecosystem Experiments
NOAA  National Oceanic and Atmospheric Administration
NSE  Nash-Sutcliffe Efficiency
NPP  net primary productivity

OAT  one at a time

PalEON  Paleo-Ecological Observatory Network
PALS  Protocol for the Analysis for Land Surface models
PC   polynomial chaos
PCMDI  Program for Climate Model Diagnosis and Intercomparison
PCN  Permafrost Carbon Network
PDA  Parameter data assimilation
PDF  probability density function
PEcAn  Predictive Ecosystem Analyzer
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PF   particle filter
PFT  plant functional type
PLUMBER PALS Land Surface Model Benchmarking Evaluation Project
PLUME  Processes Linked to Uncertainties Modelling Ecosystems
PMP  PCMDI Metrics Package

QOIs  quantities of interest

RAINFOR Amazon Forest Inventory Network
Re   ecosystem respiration
RECCAP REgional Carbon Cycle Assessment and Processes
RMSE  root-mean-square error
RTM  radiative transfer model

SA   sensitivity analysis
SAChES  Scalable Adaptive Chain Ensemble Sampling
SavMIP  MIP focused on Australian savannas
SDA  state-variable data assimilation
SFA  Scientific Focus Area
SH  sensible heat
SIF  solar-induced fluorescence
SMAP  Soil Moisture Active Passive mission
SMOS  Soil Moisture and Ocean Salinity mission
SOM  soil organic matter
SPRUCE  Spruce and Peatland Responses Under Climatic and Environmental Change
SST  sea surface temperature
SWE  snow water equivalent

TBM  terrestrial biosphere model
TES  Terrestrial Ecosystem Science
TF   Traceability Framework
TIR  thermal infrared
TRACE  Tropical Responses to Altered Climate Experiment
TRIP  Total Runoff Integrating Pathways
TRMM  Tropical Rainfall Measurement Mission
TWS  total water storage
TWSA  total water storage anomaly

UK  United Kingdom
UQ  uncertainty quantification
US   United States
USA  United States of America
USDA  US Department of Agriculture

VD  Variance Decomposition
VDM  vegetation demographic model

WCE  weather and climate extreme
WIBCS  Weighted Iterative Bayesian Compressive Sensing
WMO  World Meteorological Organization

XML  eXtensible Markup Language

ZPW  Zero Power Warming




